y=acosx/3 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$y = \frac{\operatorname{acos}{\left(x \right)}}{3}$$
transform:
$$y = \frac{\operatorname{acos}{\left(x \right)}}{3}$$
Expand brackets in the right part
y = acosx/3
We get the answer: y = acos(x)/3
Sum and product of roots
[src]
re(acos(x)) I*im(acos(x))
----------- + -------------
3 3
$$\frac{\operatorname{re}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3}$$
re(acos(x)) I*im(acos(x))
----------- + -------------
3 3
$$\frac{\operatorname{re}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3}$$
re(acos(x)) I*im(acos(x))
----------- + -------------
3 3
$$\frac{\operatorname{re}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3}$$
re(acos(x)) I*im(acos(x))
----------- + -------------
3 3
$$\frac{\operatorname{re}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3}$$
re(acos(x))/3 + i*im(acos(x))/3
re(acos(x)) I*im(acos(x))
y1 = ----------- + -------------
3 3
$$y_{1} = \frac{\operatorname{re}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(x \right)}\right)}}{3}$$
y1 = re(acos(x))/3 + i*im(acos(x))/3