Mister Exam

Other calculators

x^2+x+30=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2             
x  + x + 30 = 0
$$\left(x^{2} + x\right) + 30 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 1$$
$$c = 30$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (1) * (30) = -119

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{1}{2} + \frac{\sqrt{119} i}{2}$$
$$x_{2} = - \frac{1}{2} - \frac{\sqrt{119} i}{2}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 1$$
$$q = \frac{c}{a}$$
$$q = 30$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = -1$$
$$x_{1} x_{2} = 30$$
Sum and product of roots [src]
sum
          _____             _____
  1   I*\/ 119      1   I*\/ 119 
- - - --------- + - - + ---------
  2       2         2       2    
$$\left(- \frac{1}{2} - \frac{\sqrt{119} i}{2}\right) + \left(- \frac{1}{2} + \frac{\sqrt{119} i}{2}\right)$$
=
-1
$$-1$$
product
/          _____\ /          _____\
|  1   I*\/ 119 | |  1   I*\/ 119 |
|- - - ---------|*|- - + ---------|
\  2       2    / \  2       2    /
$$\left(- \frac{1}{2} - \frac{\sqrt{119} i}{2}\right) \left(- \frac{1}{2} + \frac{\sqrt{119} i}{2}\right)$$
=
30
$$30$$
30
Rapid solution [src]
               _____
       1   I*\/ 119 
x1 = - - - ---------
       2       2    
$$x_{1} = - \frac{1}{2} - \frac{\sqrt{119} i}{2}$$
               _____
       1   I*\/ 119 
x2 = - - + ---------
       2       2    
$$x_{2} = - \frac{1}{2} + \frac{\sqrt{119} i}{2}$$
x2 = -1/2 + sqrt(119)*i/2
Numerical answer [src]
x1 = -0.5 - 5.45435605731786*i
x2 = -0.5 + 5.45435605731786*i
x2 = -0.5 + 5.45435605731786*i