Mister Exam

Other calculators


x^2+3*x-7=0

x^2+3*x-7=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 3*x - 7 = 0
$$\left(x^{2} + 3 x\right) - 7 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 3$$
$$c = -7$$
, then
D = b^2 - 4 * a * c = 

(3)^2 - 4 * (1) * (-7) = 37

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{3}{2} + \frac{\sqrt{37}}{2}$$
$$x_{2} = - \frac{\sqrt{37}}{2} - \frac{3}{2}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 3$$
$$q = \frac{c}{a}$$
$$q = -7$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = -3$$
$$x_{1} x_{2} = -7$$
The graph
Sum and product of roots [src]
sum
        ____           ____
  3   \/ 37      3   \/ 37 
- - + ------ + - - - ------
  2     2        2     2   
$$\left(- \frac{\sqrt{37}}{2} - \frac{3}{2}\right) + \left(- \frac{3}{2} + \frac{\sqrt{37}}{2}\right)$$
=
-3
$$-3$$
product
/        ____\ /        ____\
|  3   \/ 37 | |  3   \/ 37 |
|- - + ------|*|- - - ------|
\  2     2   / \  2     2   /
$$\left(- \frac{3}{2} + \frac{\sqrt{37}}{2}\right) \left(- \frac{\sqrt{37}}{2} - \frac{3}{2}\right)$$
=
-7
$$-7$$
-7
Rapid solution [src]
             ____
       3   \/ 37 
x1 = - - + ------
       2     2   
$$x_{1} = - \frac{3}{2} + \frac{\sqrt{37}}{2}$$
             ____
       3   \/ 37 
x2 = - - - ------
       2     2   
$$x_{2} = - \frac{\sqrt{37}}{2} - \frac{3}{2}$$
x2 = -sqrt(37)/2 - 3/2
Numerical answer [src]
x1 = -4.54138126514911
x2 = 1.54138126514911
x2 = 1.54138126514911
The graph
x^2+3*x-7=0 equation