Mister Exam

Other calculators

x^2+7*x+5=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 7*x + 5 = 0
$$\left(x^{2} + 7 x\right) + 5 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 7$$
$$c = 5$$
, then
D = b^2 - 4 * a * c = 

(7)^2 - 4 * (1) * (5) = 29

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{7}{2} + \frac{\sqrt{29}}{2}$$
$$x_{2} = - \frac{7}{2} - \frac{\sqrt{29}}{2}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 7$$
$$q = \frac{c}{a}$$
$$q = 5$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = -7$$
$$x_{1} x_{2} = 5$$
The graph
Sum and product of roots [src]
sum
        ____           ____
  7   \/ 29      7   \/ 29 
- - - ------ + - - + ------
  2     2        2     2   
$$\left(- \frac{7}{2} - \frac{\sqrt{29}}{2}\right) + \left(- \frac{7}{2} + \frac{\sqrt{29}}{2}\right)$$
=
-7
$$-7$$
product
/        ____\ /        ____\
|  7   \/ 29 | |  7   \/ 29 |
|- - - ------|*|- - + ------|
\  2     2   / \  2     2   /
$$\left(- \frac{7}{2} - \frac{\sqrt{29}}{2}\right) \left(- \frac{7}{2} + \frac{\sqrt{29}}{2}\right)$$
=
5
$$5$$
5
Rapid solution [src]
             ____
       7   \/ 29 
x1 = - - - ------
       2     2   
$$x_{1} = - \frac{7}{2} - \frac{\sqrt{29}}{2}$$
             ____
       7   \/ 29 
x2 = - - + ------
       2     2   
$$x_{2} = - \frac{7}{2} + \frac{\sqrt{29}}{2}$$
x2 = -7/2 + sqrt(29)/2
Numerical answer [src]
x1 = -6.19258240356725
x2 = -0.807417596432748
x2 = -0.807417596432748