Mister Exam

Other calculators

((x^2+4x-4)/(x^2-25))/((2x+4)/(6x+30))=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
/ 2          \    
|x  + 4*x - 4|    
|------------|    
|   2        |    
\  x  - 25   /    
-------------- = 0
  /2*x + 4 \      
  |--------|      
  \6*x + 30/      
$$\frac{\frac{1}{x^{2} - 25} \left(\left(x^{2} + 4 x\right) - 4\right)}{\left(2 x + 4\right) \frac{1}{6 x + 30}} = 0$$
Detail solution
Given the equation:
$$\frac{\frac{1}{x^{2} - 25} \left(\left(x^{2} + 4 x\right) - 4\right)}{\left(2 x + 4\right) \frac{1}{6 x + 30}} = 0$$
transform:
Take common factor from the equation
$$\frac{3 \left(x^{2} + 4 x - 4\right)}{\left(x - 5\right) \left(x + 2\right)} = 0$$
the denominator
$$x - 5$$
then
x is not equal to 5

the denominator
$$x + 2$$
then
x is not equal to -2

Because the right side of the equation is zero, then the solution of the equation is exists if at least one of the multipliers in the left side of the equation equal to zero.
We get the equations
$$3 x^{2} + 12 x - 12 = 0$$
solve the resulting equation:
1.
$$3 x^{2} + 12 x - 12 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 12$$
$$c = -12$$
, then
D = b^2 - 4 * a * c = 

(12)^2 - 4 * (3) * (-12) = 288

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = -2 + 2 \sqrt{2}$$
$$x_{2} = - 2 \sqrt{2} - 2$$
but
x is not equal to 5

x is not equal to -2

The final answer:
$$x_{1} = -2 + 2 \sqrt{2}$$
$$x_{2} = - 2 \sqrt{2} - 2$$
The graph
Rapid solution [src]
              ___
x1 = -2 + 2*\/ 2 
$$x_{1} = -2 + 2 \sqrt{2}$$
              ___
x2 = -2 - 2*\/ 2 
$$x_{2} = - 2 \sqrt{2} - 2$$
x2 = -2*sqrt(2) - 2
Sum and product of roots [src]
sum
         ___            ___
-2 + 2*\/ 2  + -2 - 2*\/ 2 
$$\left(- 2 \sqrt{2} - 2\right) + \left(-2 + 2 \sqrt{2}\right)$$
=
-4
$$-4$$
product
/         ___\ /         ___\
\-2 + 2*\/ 2 /*\-2 - 2*\/ 2 /
$$\left(-2 + 2 \sqrt{2}\right) \left(- 2 \sqrt{2} - 2\right)$$
=
-4
$$-4$$
-4
Numerical answer [src]
x1 = -4.82842712474619
x2 = 0.82842712474619
x2 = 0.82842712474619