Mister Exam

Other calculators

x^2+5x-4=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 5*x - 4 = 0
(x2+5x)4=0\left(x^{2} + 5 x\right) - 4 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=5b = 5
c=4c = -4
, then
D = b^2 - 4 * a * c = 

(5)^2 - 4 * (1) * (-4) = 41

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=52+412x_{1} = - \frac{5}{2} + \frac{\sqrt{41}}{2}
x2=41252x_{2} = - \frac{\sqrt{41}}{2} - \frac{5}{2}
Vieta's Theorem
it is reduced quadratic equation
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=5p = 5
q=caq = \frac{c}{a}
q=4q = -4
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=5x_{1} + x_{2} = -5
x1x2=4x_{1} x_{2} = -4
The graph
05-20-15-10-51015-200200
Sum and product of roots [src]
sum
        ____           ____
  5   \/ 41      5   \/ 41 
- - + ------ + - - - ------
  2     2        2     2   
(41252)+(52+412)\left(- \frac{\sqrt{41}}{2} - \frac{5}{2}\right) + \left(- \frac{5}{2} + \frac{\sqrt{41}}{2}\right)
=
-5
5-5
product
/        ____\ /        ____\
|  5   \/ 41 | |  5   \/ 41 |
|- - + ------|*|- - - ------|
\  2     2   / \  2     2   /
(52+412)(41252)\left(- \frac{5}{2} + \frac{\sqrt{41}}{2}\right) \left(- \frac{\sqrt{41}}{2} - \frac{5}{2}\right)
=
-4
4-4
-4
Rapid solution [src]
             ____
       5   \/ 41 
x1 = - - + ------
       2     2   
x1=52+412x_{1} = - \frac{5}{2} + \frac{\sqrt{41}}{2}
             ____
       5   \/ 41 
x2 = - - - ------
       2     2   
x2=41252x_{2} = - \frac{\sqrt{41}}{2} - \frac{5}{2}
x2 = -sqrt(41)/2 - 5/2
Numerical answer [src]
x1 = 0.701562118716424
x2 = -5.70156211871642
x2 = -5.70156211871642