Mister Exam

Other calculators

x^2+3x+1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 3*x + 1 = 0
$$\left(x^{2} + 3 x\right) + 1 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 3$$
$$c = 1$$
, then
D = b^2 - 4 * a * c = 

(3)^2 - 4 * (1) * (1) = 5

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{3}{2} + \frac{\sqrt{5}}{2}$$
$$x_{2} = - \frac{3}{2} - \frac{\sqrt{5}}{2}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 3$$
$$q = \frac{c}{a}$$
$$q = 1$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = -3$$
$$x_{1} x_{2} = 1$$
The graph
Rapid solution [src]
             ___
       3   \/ 5 
x1 = - - - -----
       2     2  
$$x_{1} = - \frac{3}{2} - \frac{\sqrt{5}}{2}$$
             ___
       3   \/ 5 
x2 = - - + -----
       2     2  
$$x_{2} = - \frac{3}{2} + \frac{\sqrt{5}}{2}$$
x2 = -3/2 + sqrt(5)/2
Sum and product of roots [src]
sum
        ___           ___
  3   \/ 5      3   \/ 5 
- - - ----- + - - + -----
  2     2       2     2  
$$\left(- \frac{3}{2} - \frac{\sqrt{5}}{2}\right) + \left(- \frac{3}{2} + \frac{\sqrt{5}}{2}\right)$$
=
-3
$$-3$$
product
/        ___\ /        ___\
|  3   \/ 5 | |  3   \/ 5 |
|- - - -----|*|- - + -----|
\  2     2  / \  2     2  /
$$\left(- \frac{3}{2} - \frac{\sqrt{5}}{2}\right) \left(- \frac{3}{2} + \frac{\sqrt{5}}{2}\right)$$
=
1
$$1$$
1
Numerical answer [src]
x1 = -0.381966011250105
x2 = -2.61803398874989
x2 = -2.61803398874989