Mister Exam

Other calculators


x^2-14*x+15=0

x^2-14*x+15=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2                
x  - 14*x + 15 = 0
$$\left(x^{2} - 14 x\right) + 15 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -14$$
$$c = 15$$
, then
D = b^2 - 4 * a * c = 

(-14)^2 - 4 * (1) * (15) = 136

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \sqrt{34} + 7$$
$$x_{2} = 7 - \sqrt{34}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -14$$
$$q = \frac{c}{a}$$
$$q = 15$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 14$$
$$x_{1} x_{2} = 15$$
The graph
Sum and product of roots [src]
sum
      ____         ____
7 - \/ 34  + 7 + \/ 34 
$$\left(7 - \sqrt{34}\right) + \left(\sqrt{34} + 7\right)$$
=
14
$$14$$
product
/      ____\ /      ____\
\7 - \/ 34 /*\7 + \/ 34 /
$$\left(7 - \sqrt{34}\right) \left(\sqrt{34} + 7\right)$$
=
15
$$15$$
15
Rapid solution [src]
           ____
x1 = 7 - \/ 34 
$$x_{1} = 7 - \sqrt{34}$$
           ____
x2 = 7 + \/ 34 
$$x_{2} = \sqrt{34} + 7$$
x2 = sqrt(34) + 7
Numerical answer [src]
x1 = 12.8309518948453
x2 = 1.1690481051547
x2 = 1.1690481051547
The graph
x^2-14*x+15=0 equation