Mister Exam

Other calculators

x^2-4*x-2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  - 4*x - 2 = 0
(x24x)2=0\left(x^{2} - 4 x\right) - 2 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=4b = -4
c=2c = -2
, then
D = b^2 - 4 * a * c = 

(-4)^2 - 4 * (1) * (-2) = 24

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=2+6x_{1} = 2 + \sqrt{6}
x2=26x_{2} = 2 - \sqrt{6}
Vieta's Theorem
it is reduced quadratic equation
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=4p = -4
q=caq = \frac{c}{a}
q=2q = -2
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=4x_{1} + x_{2} = 4
x1x2=2x_{1} x_{2} = -2
The graph
05-15-10-5101520-200200
Rapid solution [src]
           ___
x1 = 2 - \/ 6 
x1=26x_{1} = 2 - \sqrt{6}
           ___
x2 = 2 + \/ 6 
x2=2+6x_{2} = 2 + \sqrt{6}
x2 = 2 + sqrt(6)
Sum and product of roots [src]
sum
      ___         ___
2 - \/ 6  + 2 + \/ 6 
(26)+(2+6)\left(2 - \sqrt{6}\right) + \left(2 + \sqrt{6}\right)
=
4
44
product
/      ___\ /      ___\
\2 - \/ 6 /*\2 + \/ 6 /
(26)(2+6)\left(2 - \sqrt{6}\right) \left(2 + \sqrt{6}\right)
=
-2
2-2
-2
Numerical answer [src]
x1 = -0.449489742783178
x2 = 4.44948974278318
x2 = 4.44948974278318