x^2-5x+14=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0 A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b where D = b^2 - 4*a*c - it is the discriminant.
Because
a = 1 a = 1 a = 1 b = − 5 b = -5 b = − 5 c = 14 c = 14 c = 14 , then
D = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (14) = -31 Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) or
x 1 = 5 2 + 31 i 2 x_{1} = \frac{5}{2} + \frac{\sqrt{31} i}{2} x 1 = 2 5 + 2 31 i Simplify x 2 = 5 2 − 31 i 2 x_{2} = \frac{5}{2} - \frac{\sqrt{31} i}{2} x 2 = 2 5 − 2 31 i Simplify
Vieta's Theorem
it is reduced quadratic equation
p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 where
p = b a p = \frac{b}{a} p = a b p = − 5 p = -5 p = − 5 q = c a q = \frac{c}{a} q = a c q = 14 q = 14 q = 14 Vieta Formulas
x 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 5 x_{1} + x_{2} = 5 x 1 + x 2 = 5 x 1 x 2 = 14 x_{1} x_{2} = 14 x 1 x 2 = 14
The graph
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0 20
____
5 I*\/ 31
x1 = - - --------
2 2
x 1 = 5 2 − 31 i 2 x_{1} = \frac{5}{2} - \frac{\sqrt{31} i}{2} x 1 = 2 5 − 2 31 i
____
5 I*\/ 31
x2 = - + --------
2 2
x 2 = 5 2 + 31 i 2 x_{2} = \frac{5}{2} + \frac{\sqrt{31} i}{2} x 2 = 2 5 + 2 31 i
Sum and product of roots
[src]
____ ____
5 I*\/ 31 5 I*\/ 31
0 + - - -------- + - + --------
2 2 2 2
( 0 + ( 5 2 − 31 i 2 ) ) + ( 5 2 + 31 i 2 ) \left(0 + \left(\frac{5}{2} - \frac{\sqrt{31} i}{2}\right)\right) + \left(\frac{5}{2} + \frac{\sqrt{31} i}{2}\right) ( 0 + ( 2 5 − 2 31 i ) ) + ( 2 5 + 2 31 i )
/ ____\ / ____\
|5 I*\/ 31 | |5 I*\/ 31 |
1*|- - --------|*|- + --------|
\2 2 / \2 2 /
1 ⋅ ( 5 2 − 31 i 2 ) ( 5 2 + 31 i 2 ) 1 \cdot \left(\frac{5}{2} - \frac{\sqrt{31} i}{2}\right) \left(\frac{5}{2} + \frac{\sqrt{31} i}{2}\right) 1 ⋅ ( 2 5 − 2 31 i ) ( 2 5 + 2 31 i )
x1 = 2.5 + 2.78388218141501*i
x2 = 2.5 - 2.78388218141501*i
x2 = 2.5 - 2.78388218141501*i