Mister Exam

Other calculators


x^2-5x-12=0

x^2-5x-12=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2               
x  - 5*x - 12 = 0
x25x12=0x^{2} - 5 x - 12 = 0
Detail solution
This equation is of the form
a x2+b x+c=0a\ x^2 + b\ x + c = 0
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D=b24acD = b^2 - 4 a c is the discriminant.
Because
a=1a = 1
b=5b = -5
c=12c = -12
, then
D=b24 a c=D = b^2 - 4\ a\ c =
(5)214(12)=73\left(-5\right)^{2} - 1 \cdot 4 \left(-12\right) = 73
Because D > 0, then the equation has two roots.
x1=(b+D)2ax_1 = \frac{(-b + \sqrt{D})}{2 a}
x2=(bD)2ax_2 = \frac{(-b - \sqrt{D})}{2 a}
or
x1=52+732x_{1} = \frac{5}{2} + \frac{\sqrt{73}}{2}
Simplify
x2=732+52x_{2} = - \frac{\sqrt{73}}{2} + \frac{5}{2}
Simplify
Vieta's Theorem
it is reduced quadratic equation
px+x2+q=0p x + x^{2} + q = 0
where
p=bap = \frac{b}{a}
p=5p = -5
q=caq = \frac{c}{a}
q=12q = -12
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=5x_{1} + x_{2} = 5
x1x2=12x_{1} x_{2} = -12
The graph
05-15-10-510152025-100100
Rapid solution [src]
            ____
      5   \/ 73 
x_1 = - - ------
      2     2   
x1=732+52x_{1} = - \frac{\sqrt{73}}{2} + \frac{5}{2}
            ____
      5   \/ 73 
x_2 = - + ------
      2     2   
x2=52+732x_{2} = \frac{5}{2} + \frac{\sqrt{73}}{2}
Sum and product of roots [src]
sum
      ____         ____
5   \/ 73    5   \/ 73 
- - ------ + - + ------
2     2      2     2   
(732+52)+(52+732)\left(- \frac{\sqrt{73}}{2} + \frac{5}{2}\right) + \left(\frac{5}{2} + \frac{\sqrt{73}}{2}\right)
=
5
55
product
      ____         ____
5   \/ 73    5   \/ 73 
- - ------ * - + ------
2     2      2     2   
(732+52)(52+732)\left(- \frac{\sqrt{73}}{2} + \frac{5}{2}\right) * \left(\frac{5}{2} + \frac{\sqrt{73}}{2}\right)
=
-12
12-12
Numerical answer [src]
x1 = 6.77200187265877
x2 = -1.77200187265877
x2 = -1.77200187265877
The graph
x^2-5x-12=0 equation