x^3+12*x-20=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Vieta's Theorem
it is reduced cubic equation
px2+qx+v+x3=0where
p=abp=0q=acq=12v=adv=−20Vieta Formulas
x1+x2+x3=−px1x2+x1x3+x2x3=qx1x2x3=vx1+x2+x3=0x1x2+x1x3+x2x3=12x1x2x3=−20
The graph
_______________ / _______________\
3 / ____ | ___ ___ 3 / ____ |
2 \/ 10 + 2*\/ 41 | 2*\/ 3 \/ 3 *\/ 10 + 2*\/ 41 |
x1 = ------------------ - ------------------ + I*|- ------------------ - ------------------------|
_______________ 2 | _______________ 2 |
3 / ____ | 3 / ____ |
\/ 10 + 2*\/ 41 \ \/ 10 + 2*\/ 41 /
x1=−2310+241+310+2412+i(−23310+241−310+24123)
_______________ / _______________ \
3 / ____ | ___ 3 / ____ ___ |
2 \/ 10 + 2*\/ 41 |\/ 3 *\/ 10 + 2*\/ 41 2*\/ 3 |
x2 = ------------------ - ------------------ + I*|------------------------ + ------------------|
_______________ 2 | 2 _______________|
3 / ____ | 3 / ____ |
\/ 10 + 2*\/ 41 \ \/ 10 + 2*\/ 41 /
x2=−2310+241+310+2412+i(310+24123+23310+241)
_______________
3 / ____ 4
x3 = \/ 10 + 2*\/ 41 - ------------------
_______________
3 / ____
\/ 10 + 2*\/ 41
x3=−310+2414+310+241
x3 = -4/(10 + 2*sqrt(41))^(1/3) + (10 + 2*sqrt(41))^(1/3)
Sum and product of roots
[src]
_______________ / _______________\ _______________ / _______________ \
3 / ____ | ___ ___ 3 / ____ | 3 / ____ | ___ 3 / ____ ___ | _______________
2 \/ 10 + 2*\/ 41 | 2*\/ 3 \/ 3 *\/ 10 + 2*\/ 41 | 2 \/ 10 + 2*\/ 41 |\/ 3 *\/ 10 + 2*\/ 41 2*\/ 3 | 3 / ____ 4
------------------ - ------------------ + I*|- ------------------ - ------------------------| + ------------------ - ------------------ + I*|------------------------ + ------------------| + \/ 10 + 2*\/ 41 - ------------------
_______________ 2 | _______________ 2 | _______________ 2 | 2 _______________| _______________
3 / ____ | 3 / ____ | 3 / ____ | 3 / ____ | 3 / ____
\/ 10 + 2*\/ 41 \ \/ 10 + 2*\/ 41 / \/ 10 + 2*\/ 41 \ \/ 10 + 2*\/ 41 / \/ 10 + 2*\/ 41
(−310+2414+310+241)+((−2310+241+310+2412+i(−23310+241−310+24123))+(−2310+241+310+2412+i(310+24123+23310+241)))
/ _______________ \ / _______________\
| ___ 3 / ____ ___ | | ___ ___ 3 / ____ |
|\/ 3 *\/ 10 + 2*\/ 41 2*\/ 3 | | 2*\/ 3 \/ 3 *\/ 10 + 2*\/ 41 |
I*|------------------------ + ------------------| + I*|- ------------------ - ------------------------|
| 2 _______________| | _______________ 2 |
| 3 / ____ | | 3 / ____ |
\ \/ 10 + 2*\/ 41 / \ \/ 10 + 2*\/ 41 /
i(−23310+241−310+24123)+i(310+24123+23310+241)
/ _______________ / _______________\\ / _______________ / _______________ \\
| 3 / ____ | ___ ___ 3 / ____ || | 3 / ____ | ___ 3 / ____ ___ || / _______________ \
| 2 \/ 10 + 2*\/ 41 | 2*\/ 3 \/ 3 *\/ 10 + 2*\/ 41 || | 2 \/ 10 + 2*\/ 41 |\/ 3 *\/ 10 + 2*\/ 41 2*\/ 3 || |3 / ____ 4 |
|------------------ - ------------------ + I*|- ------------------ - ------------------------||*|------------------ - ------------------ + I*|------------------------ + ------------------||*|\/ 10 + 2*\/ 41 - ------------------|
| _______________ 2 | _______________ 2 || | _______________ 2 | 2 _______________|| | _______________|
|3 / ____ | 3 / ____ || |3 / ____ | 3 / ____ || | 3 / ____ |
\\/ 10 + 2*\/ 41 \ \/ 10 + 2*\/ 41 // \\/ 10 + 2*\/ 41 \ \/ 10 + 2*\/ 41 // \ \/ 10 + 2*\/ 41 /
(−2310+241+310+2412+i(310+24123+23310+241))(−2310+241+310+2412+i(−23310+241−310+24123))(−310+2414+310+241)
x1 = -0.712675737640377 - 3.67746109715164*i
x3 = -0.712675737640377 + 3.67746109715164*i
x3 = -0.712675737640377 + 3.67746109715164*i