Mister Exam

Other calculators

x^3+12*x-20=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3                
x  + 12*x - 20 = 0
$$\left(x^{3} + 12 x\right) - 20 = 0$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 12$$
$$v = \frac{d}{a}$$
$$v = -20$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 12$$
$$x_{1} x_{2} x_{3} = -20$$
The graph
Rapid solution [src]
                             _______________     /                                _______________\
                          3 /          ____      |           ___           ___ 3 /          ____ |
             2            \/  10 + 2*\/ 41       |       2*\/ 3          \/ 3 *\/  10 + 2*\/ 41  |
x1 = ------------------ - ------------------ + I*|- ------------------ - ------------------------|
        _______________           2              |     _______________              2            |
     3 /          ____                           |  3 /          ____                            |
     \/  10 + 2*\/ 41                            \  \/  10 + 2*\/ 41                             /
$$x_{1} = - \frac{\sqrt[3]{10 + 2 \sqrt{41}}}{2} + \frac{2}{\sqrt[3]{10 + 2 \sqrt{41}}} + i \left(- \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2} - \frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}}\right)$$
                             _______________     /         _______________                     \
                          3 /          ____      |  ___ 3 /          ____             ___      |
             2            \/  10 + 2*\/ 41       |\/ 3 *\/  10 + 2*\/ 41          2*\/ 3       |
x2 = ------------------ - ------------------ + I*|------------------------ + ------------------|
        _______________           2              |           2                  _______________|
     3 /          ____                           |                           3 /          ____ |
     \/  10 + 2*\/ 41                            \                           \/  10 + 2*\/ 41  /
$$x_{2} = - \frac{\sqrt[3]{10 + 2 \sqrt{41}}}{2} + \frac{2}{\sqrt[3]{10 + 2 \sqrt{41}}} + i \left(\frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}} + \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2}\right)$$
        _______________                     
     3 /          ____            4         
x3 = \/  10 + 2*\/ 41   - ------------------
                             _______________
                          3 /          ____ 
                          \/  10 + 2*\/ 41  
$$x_{3} = - \frac{4}{\sqrt[3]{10 + 2 \sqrt{41}}} + \sqrt[3]{10 + 2 \sqrt{41}}$$
x3 = -4/(10 + 2*sqrt(41))^(1/3) + (10 + 2*sqrt(41))^(1/3)
Sum and product of roots [src]
sum
                        _______________     /                                _______________\                           _______________     /         _______________                     \                                          
                     3 /          ____      |           ___           ___ 3 /          ____ |                        3 /          ____      |  ___ 3 /          ____             ___      |      _______________                     
        2            \/  10 + 2*\/ 41       |       2*\/ 3          \/ 3 *\/  10 + 2*\/ 41  |           2            \/  10 + 2*\/ 41       |\/ 3 *\/  10 + 2*\/ 41          2*\/ 3       |   3 /          ____            4         
------------------ - ------------------ + I*|- ------------------ - ------------------------| + ------------------ - ------------------ + I*|------------------------ + ------------------| + \/  10 + 2*\/ 41   - ------------------
   _______________           2              |     _______________              2            |      _______________           2              |           2                  _______________|                           _______________
3 /          ____                           |  3 /          ____                            |   3 /          ____                           |                           3 /          ____ |                        3 /          ____ 
\/  10 + 2*\/ 41                            \  \/  10 + 2*\/ 41                             /   \/  10 + 2*\/ 41                            \                           \/  10 + 2*\/ 41  /                        \/  10 + 2*\/ 41  
$$\left(- \frac{4}{\sqrt[3]{10 + 2 \sqrt{41}}} + \sqrt[3]{10 + 2 \sqrt{41}}\right) + \left(\left(- \frac{\sqrt[3]{10 + 2 \sqrt{41}}}{2} + \frac{2}{\sqrt[3]{10 + 2 \sqrt{41}}} + i \left(- \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2} - \frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}}\right)\right) + \left(- \frac{\sqrt[3]{10 + 2 \sqrt{41}}}{2} + \frac{2}{\sqrt[3]{10 + 2 \sqrt{41}}} + i \left(\frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}} + \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2}\right)\right)\right)$$
=
  /         _______________                     \     /                                _______________\
  |  ___ 3 /          ____             ___      |     |           ___           ___ 3 /          ____ |
  |\/ 3 *\/  10 + 2*\/ 41          2*\/ 3       |     |       2*\/ 3          \/ 3 *\/  10 + 2*\/ 41  |
I*|------------------------ + ------------------| + I*|- ------------------ - ------------------------|
  |           2                  _______________|     |     _______________              2            |
  |                           3 /          ____ |     |  3 /          ____                            |
  \                           \/  10 + 2*\/ 41  /     \  \/  10 + 2*\/ 41                             /
$$i \left(- \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2} - \frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}}\right) + i \left(\frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}} + \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2}\right)$$
product
/                        _______________     /                                _______________\\ /                        _______________     /         _______________                     \\                                          
|                     3 /          ____      |           ___           ___ 3 /          ____ || |                     3 /          ____      |  ___ 3 /          ____             ___      || /   _______________                     \
|        2            \/  10 + 2*\/ 41       |       2*\/ 3          \/ 3 *\/  10 + 2*\/ 41  || |        2            \/  10 + 2*\/ 41       |\/ 3 *\/  10 + 2*\/ 41          2*\/ 3       || |3 /          ____            4         |
|------------------ - ------------------ + I*|- ------------------ - ------------------------||*|------------------ - ------------------ + I*|------------------------ + ------------------||*|\/  10 + 2*\/ 41   - ------------------|
|   _______________           2              |     _______________              2            || |   _______________           2              |           2                  _______________|| |                        _______________|
|3 /          ____                           |  3 /          ____                            || |3 /          ____                           |                           3 /          ____ || |                     3 /          ____ |
\\/  10 + 2*\/ 41                            \  \/  10 + 2*\/ 41                             // \\/  10 + 2*\/ 41                            \                           \/  10 + 2*\/ 41  // \                     \/  10 + 2*\/ 41  /
$$\left(- \frac{\sqrt[3]{10 + 2 \sqrt{41}}}{2} + \frac{2}{\sqrt[3]{10 + 2 \sqrt{41}}} + i \left(\frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}} + \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2}\right)\right) \left(- \frac{\sqrt[3]{10 + 2 \sqrt{41}}}{2} + \frac{2}{\sqrt[3]{10 + 2 \sqrt{41}}} + i \left(- \frac{\sqrt{3} \sqrt[3]{10 + 2 \sqrt{41}}}{2} - \frac{2 \sqrt{3}}{\sqrt[3]{10 + 2 \sqrt{41}}}\right)\right) \left(- \frac{4}{\sqrt[3]{10 + 2 \sqrt{41}}} + \sqrt[3]{10 + 2 \sqrt{41}}\right)$$
=
20
$$20$$
20
Numerical answer [src]
x1 = -0.712675737640377 - 3.67746109715164*i
x2 = 1.42535147528075
x3 = -0.712675737640377 + 3.67746109715164*i
x3 = -0.712675737640377 + 3.67746109715164*i