Mister Exam

Other calculators

(x^3)+10(x^2)+7x-18=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3       2               
x  + 10*x  + 7*x - 18 = 0
$$\left(7 x + \left(x^{3} + 10 x^{2}\right)\right) - 18 = 0$$
Detail solution
Given the equation:
$$\left(7 x + \left(x^{3} + 10 x^{2}\right)\right) - 18 = 0$$
transform
$$\left(7 x + \left(\left(10 x^{2} + \left(x^{3} - 1\right)\right) - 10\right)\right) - 7 = 0$$
or
$$\left(7 x + \left(\left(10 x^{2} + \left(x^{3} - 1^{3}\right)\right) - 10 \cdot 1^{2}\right)\right) - 7 = 0$$
$$7 \left(x - 1\right) + \left(10 \left(x^{2} - 1^{2}\right) + \left(x^{3} - 1^{3}\right)\right) = 0$$
$$7 \left(x - 1\right) + \left(\left(x - 1\right) \left(\left(x^{2} + x\right) + 1^{2}\right) + 10 \left(x - 1\right) \left(x + 1\right)\right) = 0$$
Take common factor -1 + x from the equation
we get:
$$\left(x - 1\right) \left(\left(10 \left(x + 1\right) + \left(\left(x^{2} + x\right) + 1^{2}\right)\right) + 7\right) = 0$$
or
$$\left(x - 1\right) \left(x^{2} + 11 x + 18\right) = 0$$
then:
$$x_{1} = 1$$
and also
we get the equation
$$x^{2} + 11 x + 18 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 11$$
$$c = 18$$
, then
D = b^2 - 4 * a * c = 

(11)^2 - 4 * (1) * (18) = 49

Because D > 0, then the equation has two roots.
x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

or
$$x_{2} = -2$$
$$x_{3} = -9$$
The final answer for x^3 + 10*x^2 + 7*x - 18 = 0:
$$x_{1} = 1$$
$$x_{2} = -2$$
$$x_{3} = -9$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 10$$
$$q = \frac{c}{a}$$
$$q = 7$$
$$v = \frac{d}{a}$$
$$v = -18$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = -10$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 7$$
$$x_{1} x_{2} x_{3} = -18$$
Sum and product of roots [src]
sum
-9 - 2 + 1
$$\left(-9 - 2\right) + 1$$
=
-10
$$-10$$
product
-9*(-2)
$$- -18$$
=
18
$$18$$
18
Rapid solution [src]
x1 = -9
$$x_{1} = -9$$
x2 = -2
$$x_{2} = -2$$
x3 = 1
$$x_{3} = 1$$
x3 = 1
Numerical answer [src]
x1 = 1.0
x2 = -2.0
x3 = -9.0
x3 = -9.0