Given the equation:
$$x^{3} + 5 x^{2} = 9 x + 45$$
transform
$$\left(- 9 x + \left(\left(5 x^{2} + \left(x^{3} - 27\right)\right) - 45\right)\right) + 27 = 0$$
or
$$\left(- 9 x + \left(\left(5 x^{2} + \left(x^{3} - 3^{3}\right)\right) - 5 \cdot 3^{2}\right)\right) + 3 \cdot 9 = 0$$
$$- 9 \left(x - 3\right) + \left(5 \left(x^{2} - 3^{2}\right) + \left(x^{3} - 3^{3}\right)\right) = 0$$
$$- 9 \left(x - 3\right) + \left(\left(x - 3\right) \left(\left(x^{2} + 3 x\right) + 3^{2}\right) + 5 \left(x - 3\right) \left(x + 3\right)\right) = 0$$
Take common factor -3 + x from the equation
we get:
$$\left(x - 3\right) \left(\left(5 \left(x + 3\right) + \left(\left(x^{2} + 3 x\right) + 3^{2}\right)\right) - 9\right) = 0$$
or
$$\left(x - 3\right) \left(x^{2} + 8 x + 15\right) = 0$$
then:
$$x_{1} = 3$$
and also
we get the equation
$$x^{2} + 8 x + 15 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 8$$
$$c = 15$$
, then
D = b^2 - 4 * a * c =
(8)^2 - 4 * (1) * (15) = 4
Because D > 0, then the equation has two roots.
x2 = (-b + sqrt(D)) / (2*a)
x3 = (-b - sqrt(D)) / (2*a)
or
$$x_{2} = -3$$
$$x_{3} = -5$$
The final answer for x^3 + 5*x^2 - 9*x - 45 = 0:
$$x_{1} = 3$$
$$x_{2} = -3$$
$$x_{3} = -5$$