Mister Exam

Other calculators


x^3+5*x^2=9*x+45

x^3+5*x^2=9*x+45 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3      2           
x  + 5*x  = 9*x + 45
$$x^{3} + 5 x^{2} = 9 x + 45$$
Detail solution
Given the equation:
$$x^{3} + 5 x^{2} = 9 x + 45$$
transform
$$\left(- 9 x + \left(\left(5 x^{2} + \left(x^{3} - 27\right)\right) - 45\right)\right) + 27 = 0$$
or
$$\left(- 9 x + \left(\left(5 x^{2} + \left(x^{3} - 3^{3}\right)\right) - 5 \cdot 3^{2}\right)\right) + 3 \cdot 9 = 0$$
$$- 9 \left(x - 3\right) + \left(5 \left(x^{2} - 3^{2}\right) + \left(x^{3} - 3^{3}\right)\right) = 0$$
$$- 9 \left(x - 3\right) + \left(\left(x - 3\right) \left(\left(x^{2} + 3 x\right) + 3^{2}\right) + 5 \left(x - 3\right) \left(x + 3\right)\right) = 0$$
Take common factor -3 + x from the equation
we get:
$$\left(x - 3\right) \left(\left(5 \left(x + 3\right) + \left(\left(x^{2} + 3 x\right) + 3^{2}\right)\right) - 9\right) = 0$$
or
$$\left(x - 3\right) \left(x^{2} + 8 x + 15\right) = 0$$
then:
$$x_{1} = 3$$
and also
we get the equation
$$x^{2} + 8 x + 15 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 8$$
$$c = 15$$
, then
D = b^2 - 4 * a * c = 

(8)^2 - 4 * (1) * (15) = 4

Because D > 0, then the equation has two roots.
x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

or
$$x_{2} = -3$$
$$x_{3} = -5$$
The final answer for x^3 + 5*x^2 - 9*x - 45 = 0:
$$x_{1} = 3$$
$$x_{2} = -3$$
$$x_{3} = -5$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 5$$
$$q = \frac{c}{a}$$
$$q = -9$$
$$v = \frac{d}{a}$$
$$v = -45$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = -5$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = -9$$
$$x_{1} x_{2} x_{3} = -45$$
The graph
Rapid solution [src]
x1 = -5
$$x_{1} = -5$$
x2 = -3
$$x_{2} = -3$$
x3 = 3
$$x_{3} = 3$$
x3 = 3
Sum and product of roots [src]
sum
-5 - 3 + 3
$$\left(-5 - 3\right) + 3$$
=
-5
$$-5$$
product
-5*(-3)*3
$$3 \left(- -15\right)$$
=
45
$$45$$
45
Numerical answer [src]
x1 = -3.0
x2 = 3.0
x3 = -5.0
x3 = -5.0
The graph
x^3+5*x^2=9*x+45 equation