Given the equation:
$$2 x + \left(x^{3} + 3 x^{2}\right) = 210$$
transform
$$\left(2 x + \left(\left(3 x^{2} + \left(x^{3} - 125\right)\right) - 75\right)\right) - 10 = 0$$
or
$$\left(2 x + \left(\left(3 x^{2} + \left(x^{3} - 5^{3}\right)\right) - 3 \cdot 5^{2}\right)\right) + \left(-2\right) 5 = 0$$
$$2 \left(x - 5\right) + \left(3 \left(x^{2} - 5^{2}\right) + \left(x^{3} - 5^{3}\right)\right) = 0$$
$$2 \left(x - 5\right) + \left(\left(x - 5\right) \left(\left(x^{2} + 5 x\right) + 5^{2}\right) + 3 \left(x - 5\right) \left(x + 5\right)\right) = 0$$
Take common factor -5 + x from the equation
we get:
$$\left(x - 5\right) \left(\left(3 \left(x + 5\right) + \left(\left(x^{2} + 5 x\right) + 5^{2}\right)\right) + 2\right) = 0$$
or
$$\left(x - 5\right) \left(x^{2} + 8 x + 42\right) = 0$$
then:
$$x_{1} = 5$$
and also
we get the equation
$$x^{2} + 8 x + 42 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 8$$
$$c = 42$$
, then
D = b^2 - 4 * a * c =
(8)^2 - 4 * (1) * (42) = -104
Because D<0, then the equation
has no real roots,
but complex roots is exists.
x2 = (-b + sqrt(D)) / (2*a)
x3 = (-b - sqrt(D)) / (2*a)
or
$$x_{2} = -4 + \sqrt{26} i$$
$$x_{3} = -4 - \sqrt{26} i$$
The final answer for x^3 + 3*x^2 + 2*x - 210 = 0:
$$x_{1} = 5$$
$$x_{2} = -4 + \sqrt{26} i$$
$$x_{3} = -4 - \sqrt{26} i$$