Mister Exam

Other calculators

x^3+3x^2+2x=210 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3      2            
x  + 3*x  + 2*x = 210
$$2 x + \left(x^{3} + 3 x^{2}\right) = 210$$
Detail solution
Given the equation:
$$2 x + \left(x^{3} + 3 x^{2}\right) = 210$$
transform
$$\left(2 x + \left(\left(3 x^{2} + \left(x^{3} - 125\right)\right) - 75\right)\right) - 10 = 0$$
or
$$\left(2 x + \left(\left(3 x^{2} + \left(x^{3} - 5^{3}\right)\right) - 3 \cdot 5^{2}\right)\right) + \left(-2\right) 5 = 0$$
$$2 \left(x - 5\right) + \left(3 \left(x^{2} - 5^{2}\right) + \left(x^{3} - 5^{3}\right)\right) = 0$$
$$2 \left(x - 5\right) + \left(\left(x - 5\right) \left(\left(x^{2} + 5 x\right) + 5^{2}\right) + 3 \left(x - 5\right) \left(x + 5\right)\right) = 0$$
Take common factor -5 + x from the equation
we get:
$$\left(x - 5\right) \left(\left(3 \left(x + 5\right) + \left(\left(x^{2} + 5 x\right) + 5^{2}\right)\right) + 2\right) = 0$$
or
$$\left(x - 5\right) \left(x^{2} + 8 x + 42\right) = 0$$
then:
$$x_{1} = 5$$
and also
we get the equation
$$x^{2} + 8 x + 42 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 8$$
$$c = 42$$
, then
D = b^2 - 4 * a * c = 

(8)^2 - 4 * (1) * (42) = -104

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

or
$$x_{2} = -4 + \sqrt{26} i$$
$$x_{3} = -4 - \sqrt{26} i$$
The final answer for x^3 + 3*x^2 + 2*x - 210 = 0:
$$x_{1} = 5$$
$$x_{2} = -4 + \sqrt{26} i$$
$$x_{3} = -4 - \sqrt{26} i$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 3$$
$$q = \frac{c}{a}$$
$$q = 2$$
$$v = \frac{d}{a}$$
$$v = -210$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = -3$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 2$$
$$x_{1} x_{2} x_{3} = -210$$
The graph
Rapid solution [src]
x1 = 5
$$x_{1} = 5$$
              ____
x2 = -4 - I*\/ 26 
$$x_{2} = -4 - \sqrt{26} i$$
              ____
x3 = -4 + I*\/ 26 
$$x_{3} = -4 + \sqrt{26} i$$
x3 = -4 + sqrt(26)*i
Sum and product of roots [src]
sum
             ____            ____
5 + -4 - I*\/ 26  + -4 + I*\/ 26 
$$\left(5 + \left(-4 - \sqrt{26} i\right)\right) + \left(-4 + \sqrt{26} i\right)$$
=
-3
$$-3$$
product
  /         ____\ /         ____\
5*\-4 - I*\/ 26 /*\-4 + I*\/ 26 /
$$5 \left(-4 - \sqrt{26} i\right) \left(-4 + \sqrt{26} i\right)$$
=
210
$$210$$
210
Numerical answer [src]
x1 = 5.0
x2 = -4.0 + 5.09901951359278*i
x3 = -4.0 - 5.09901951359278*i
x3 = -4.0 - 5.09901951359278*i