Mister Exam

Other calculators

x^3+18x+15=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3                
x  + 18*x + 15 = 0
$$\left(x^{3} + 18 x\right) + 15 = 0$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 18$$
$$v = \frac{d}{a}$$
$$v = 15$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 18$$
$$x_{1} x_{2} x_{3} = 15$$
The graph
Sum and product of roots [src]
sum
                          2/3     /           6 ___\            2/3     /         6 ___\
 2/3     3 ___   3 ___   3        |   5/6   3*\/ 3 |   3 ___   3        | 5/6   3*\/ 3 |
3    - 2*\/ 3  + \/ 3  - ---- + I*|- 3    - -------| + \/ 3  - ---- + I*|3    + -------|
                          2       \            2   /            2       \          2   /
$$\left(\left(- 2 \sqrt[3]{3} + 3^{\frac{2}{3}}\right) + \left(- \frac{3^{\frac{2}{3}}}{2} + \sqrt[3]{3} + i \left(- 3^{\frac{5}{6}} - \frac{3 \sqrt[6]{3}}{2}\right)\right)\right) + \left(- \frac{3^{\frac{2}{3}}}{2} + \sqrt[3]{3} + i \left(\frac{3 \sqrt[6]{3}}{2} + 3^{\frac{5}{6}}\right)\right)$$
=
  /         6 ___\     /           6 ___\
  | 5/6   3*\/ 3 |     |   5/6   3*\/ 3 |
I*|3    + -------| + I*|- 3    - -------|
  \          2   /     \            2   /
$$i \left(- 3^{\frac{5}{6}} - \frac{3 \sqrt[6]{3}}{2}\right) + i \left(\frac{3 \sqrt[6]{3}}{2} + 3^{\frac{5}{6}}\right)$$
product
                 /         2/3     /           6 ___\\ /         2/3     /         6 ___\\
/ 2/3     3 ___\ |3 ___   3        |   5/6   3*\/ 3 || |3 ___   3        | 5/6   3*\/ 3 ||
\3    - 2*\/ 3 /*|\/ 3  - ---- + I*|- 3    - -------||*|\/ 3  - ---- + I*|3    + -------||
                 \         2       \            2   // \         2       \          2   //
$$\left(- 2 \sqrt[3]{3} + 3^{\frac{2}{3}}\right) \left(- \frac{3^{\frac{2}{3}}}{2} + \sqrt[3]{3} + i \left(- 3^{\frac{5}{6}} - \frac{3 \sqrt[6]{3}}{2}\right)\right) \left(- \frac{3^{\frac{2}{3}}}{2} + \sqrt[3]{3} + i \left(\frac{3 \sqrt[6]{3}}{2} + 3^{\frac{5}{6}}\right)\right)$$
=
-15
$$-15$$
-15
Rapid solution [src]
      2/3     3 ___
x1 = 3    - 2*\/ 3 
$$x_{1} = - 2 \sqrt[3]{3} + 3^{\frac{2}{3}}$$
              2/3     /           6 ___\
     3 ___   3        |   5/6   3*\/ 3 |
x2 = \/ 3  - ---- + I*|- 3    - -------|
              2       \            2   /
$$x_{2} = - \frac{3^{\frac{2}{3}}}{2} + \sqrt[3]{3} + i \left(- 3^{\frac{5}{6}} - \frac{3 \sqrt[6]{3}}{2}\right)$$
              2/3     /         6 ___\
     3 ___   3        | 5/6   3*\/ 3 |
x3 = \/ 3  - ---- + I*|3    + -------|
              2       \          2   /
$$x_{3} = - \frac{3^{\frac{2}{3}}}{2} + \sqrt[3]{3} + i \left(\frac{3 \sqrt[6]{3}}{2} + 3^{\frac{5}{6}}\right)$$
x3 = -3^(2/3)/2 + 3^(1/3) + i*(3*3^(1/6)/2 + 3^(5/6))
Numerical answer [src]
x1 = -0.804415317562913
x2 = 0.402207658781456 + 4.29945496573082*i
x3 = 0.402207658781456 - 4.29945496573082*i
x3 = 0.402207658781456 - 4.29945496573082*i