Mister Exam

Other calculators


x^3-3*x-2=0

x^3-3*x-2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3              
x  - 3*x - 2 = 0
(x33x)2=0\left(x^{3} - 3 x\right) - 2 = 0
Detail solution
Given the equation:
(x33x)2=0\left(x^{3} - 3 x\right) - 2 = 0
transform
(3x+(x3+1))3=0\left(- 3 x + \left(x^{3} + 1\right)\right) - 3 = 0
or
(3x+(x3(1)3))3=0\left(- 3 x + \left(x^{3} - \left(-1\right)^{3}\right)\right) - 3 = 0
3(x+1)+(x3(1)3)=0- 3 \left(x + 1\right) + \left(x^{3} - \left(-1\right)^{3}\right) = 0
(x+1)((x2x)+(1)2)3(x+1)=0\left(x + 1\right) \left(\left(x^{2} - x\right) + \left(-1\right)^{2}\right) - 3 \left(x + 1\right) = 0
Take common factor 1 + x from the equation
we get:
(x+1)(((x2x)+(1)2)3)=0\left(x + 1\right) \left(\left(\left(x^{2} - x\right) + \left(-1\right)^{2}\right) - 3\right) = 0
or
(x+1)(x2x2)=0\left(x + 1\right) \left(x^{2} - x - 2\right) = 0
then:
x1=1x_{1} = -1
and also
we get the equation
x2x2=0x^{2} - x - 2 = 0
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x2=Db2ax_{2} = \frac{\sqrt{D} - b}{2 a}
x3=Db2ax_{3} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=1b = -1
c=2c = -2
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (1) * (-2) = 9

Because D > 0, then the equation has two roots.
x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

or
x2=2x_{2} = 2
x3=1x_{3} = -1
The final answer for x^3 - 3*x - 2 = 0:
x1=1x_{1} = -1
x2=2x_{2} = 2
x3=1x_{3} = -1
Vieta's Theorem
it is reduced cubic equation
px2+qx+v+x3=0p x^{2} + q x + v + x^{3} = 0
where
p=bap = \frac{b}{a}
p=0p = 0
q=caq = \frac{c}{a}
q=3q = -3
v=dav = \frac{d}{a}
v=2v = -2
Vieta Formulas
x1+x2+x3=px_{1} + x_{2} + x_{3} = - p
x1x2+x1x3+x2x3=qx_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q
x1x2x3=vx_{1} x_{2} x_{3} = v
x1+x2+x3=0x_{1} + x_{2} + x_{3} = 0
x1x2+x1x3+x2x3=3x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = -3
x1x2x3=2x_{1} x_{2} x_{3} = -2
The graph
05-15-10-51015-50005000
Rapid solution [src]
x1 = -1
x1=1x_{1} = -1
x2 = 2
x2=2x_{2} = 2
x2 = 2
Sum and product of roots [src]
sum
-1 + 2
1+2-1 + 2
=
1
11
product
-2
2- 2
=
-2
2-2
-2
Numerical answer [src]
x1 = 2.0
x2 = -1.0
x2 = -1.0
The graph
x^3-3*x-2=0 equation