Given the equation:
$$\left(x^{3} - 6 x\right) - 40 = 0$$
transform
$$\left(- 6 x + \left(x^{3} - 64\right)\right) + 24 = 0$$
or
$$\left(- 6 x + \left(x^{3} - 4^{3}\right)\right) + 4 \cdot 6 = 0$$
$$- 6 \left(x - 4\right) + \left(x^{3} - 4^{3}\right) = 0$$
$$\left(x - 4\right) \left(\left(x^{2} + 4 x\right) + 4^{2}\right) - 6 \left(x - 4\right) = 0$$
Take common factor -4 + x from the equation
we get:
$$\left(x - 4\right) \left(\left(\left(x^{2} + 4 x\right) + 4^{2}\right) - 6\right) = 0$$
or
$$\left(x - 4\right) \left(x^{2} + 4 x + 10\right) = 0$$
then:
$$x_{1} = 4$$
and also
we get the equation
$$x^{2} + 4 x + 10 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 4$$
$$c = 10$$
, then
D = b^2 - 4 * a * c =
(4)^2 - 4 * (1) * (10) = -24
Because D<0, then the equation
has no real roots,
but complex roots is exists.
x2 = (-b + sqrt(D)) / (2*a)
x3 = (-b - sqrt(D)) / (2*a)
or
$$x_{2} = -2 + \sqrt{6} i$$
$$x_{3} = -2 - \sqrt{6} i$$
The final answer for x^3 - 6*x - 40 = 0:
$$x_{1} = 4$$
$$x_{2} = -2 + \sqrt{6} i$$
$$x_{3} = -2 - \sqrt{6} i$$