Mister Exam

Other calculators

x^3-6x-40=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3               
x  - 6*x - 40 = 0
$$\left(x^{3} - 6 x\right) - 40 = 0$$
Detail solution
Given the equation:
$$\left(x^{3} - 6 x\right) - 40 = 0$$
transform
$$\left(- 6 x + \left(x^{3} - 64\right)\right) + 24 = 0$$
or
$$\left(- 6 x + \left(x^{3} - 4^{3}\right)\right) + 4 \cdot 6 = 0$$
$$- 6 \left(x - 4\right) + \left(x^{3} - 4^{3}\right) = 0$$
$$\left(x - 4\right) \left(\left(x^{2} + 4 x\right) + 4^{2}\right) - 6 \left(x - 4\right) = 0$$
Take common factor -4 + x from the equation
we get:
$$\left(x - 4\right) \left(\left(\left(x^{2} + 4 x\right) + 4^{2}\right) - 6\right) = 0$$
or
$$\left(x - 4\right) \left(x^{2} + 4 x + 10\right) = 0$$
then:
$$x_{1} = 4$$
and also
we get the equation
$$x^{2} + 4 x + 10 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 4$$
$$c = 10$$
, then
D = b^2 - 4 * a * c = 

(4)^2 - 4 * (1) * (10) = -24

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

or
$$x_{2} = -2 + \sqrt{6} i$$
$$x_{3} = -2 - \sqrt{6} i$$
The final answer for x^3 - 6*x - 40 = 0:
$$x_{1} = 4$$
$$x_{2} = -2 + \sqrt{6} i$$
$$x_{3} = -2 - \sqrt{6} i$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = -6$$
$$v = \frac{d}{a}$$
$$v = -40$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = -6$$
$$x_{1} x_{2} x_{3} = -40$$
Rapid solution [src]
x1 = 4
$$x_{1} = 4$$
              ___
x2 = -2 - I*\/ 6 
$$x_{2} = -2 - \sqrt{6} i$$
              ___
x3 = -2 + I*\/ 6 
$$x_{3} = -2 + \sqrt{6} i$$
x3 = -2 + sqrt(6)*i
Sum and product of roots [src]
sum
             ___            ___
4 + -2 - I*\/ 6  + -2 + I*\/ 6 
$$\left(4 + \left(-2 - \sqrt{6} i\right)\right) + \left(-2 + \sqrt{6} i\right)$$
=
0
$$0$$
product
  /         ___\ /         ___\
4*\-2 - I*\/ 6 /*\-2 + I*\/ 6 /
$$4 \left(-2 - \sqrt{6} i\right) \left(-2 + \sqrt{6} i\right)$$
=
40
$$40$$
40
Numerical answer [src]
x1 = -2.0 - 2.44948974278318*i
x2 = -2.0 + 2.44948974278318*i
x3 = 4.0
x3 = 4.0