Mister Exam

Other calculators


x^6=(6x-8)^3

x^6=(6x-8)^3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 6            3
x  = (6*x - 8) 
$$x^{6} = \left(6 x - 8\right)^{3}$$
The graph
Rapid solution [src]
x_1 = 2
$$x_{1} = 2$$
x_2 = 4
$$x_{2} = 4$$
              /      ___              /    /     ___\\\              /    /     ___\\
        3     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|
x_3 = - - + I*|- ------- + \/ 217 *cos|--------------|| + \/ 217 *sin|--------------|
        2     \     2                 \      2       //              \      2       /
$$x_{3} = - \frac{3}{2} + \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + i \left(- \frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)$$
              /    ___              /    /     ___\\\              /    /     ___\\
        3     |3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|
x_4 = - - + I*|------- + \/ 217 *cos|--------------|| - \/ 217 *sin|--------------|
        2     \   2                 \      2       //              \      2       /
$$x_{4} = - \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3}{2} + i \left(\frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)$$
              /    ___              /    /     ___\\\              /    /     ___\\
        3     |3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|
x_5 = - - + I*|------- - \/ 217 *cos|--------------|| + \/ 217 *sin|--------------|
        2     \   2                 \      2       //              \      2       /
$$x_{5} = - \frac{3}{2} + \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + \frac{3 \sqrt{3}}{2}\right)$$
              /      ___              /    /     ___\\\              /    /     ___\\
        3     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|
x_6 = - - + I*|- ------- - \/ 217 *cos|--------------|| - \/ 217 *sin|--------------|
        2     \     2                 \      2       //              \      2       /
$$x_{6} = - \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3}{2} + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3 \sqrt{3}}{2}\right)$$
Sum and product of roots [src]
sum
                /      ___              /    /     ___\\\              /    /     ___\\           /    ___              /    /     ___\\\              /    /     ___\\           /    ___              /    /     ___\\\              /    /     ___\\           /      ___              /    /     ___\\\              /    /     ___\\
          3     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|     3     |3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|     3     |3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|     3     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|
2 + 4 + - - + I*|- ------- + \/ 217 *cos|--------------|| + \/ 217 *sin|--------------| + - - + I*|------- + \/ 217 *cos|--------------|| - \/ 217 *sin|--------------| + - - + I*|------- - \/ 217 *cos|--------------|| + \/ 217 *sin|--------------| + - - + I*|- ------- - \/ 217 *cos|--------------|| - \/ 217 *sin|--------------|
          2     \     2                 \      2       //              \      2       /     2     \   2                 \      2       //              \      2       /     2     \   2                 \      2       //              \      2       /     2     \     2                 \      2       //              \      2       /
$$\left(2\right) + \left(4\right) + \left(- \frac{3}{2} + \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + i \left(- \frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)\right) + \left(- \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3}{2} + i \left(\frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)\right) + \left(- \frac{3}{2} + \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + \frac{3 \sqrt{3}}{2}\right)\right) + \left(- \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3}{2} + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3 \sqrt{3}}{2}\right)\right)$$
=
  /      ___              /    /     ___\\\     /      ___              /    /     ___\\\     /    ___              /    /     ___\\\     /    ___              /    /     ___\\\
  |  3*\/ 3    4 _____    |atan\17*\/ 3 /||     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||     |3*\/ 3    4 _____    |atan\17*\/ 3 /||     |3*\/ 3    4 _____    |atan\17*\/ 3 /||
I*|- ------- + \/ 217 *cos|--------------|| + I*|- ------- - \/ 217 *cos|--------------|| + I*|------- + \/ 217 *cos|--------------|| + I*|------- - \/ 217 *cos|--------------||
  \     2                 \      2       //     \     2                 \      2       //     \   2                 \      2       //     \   2                 \      2       //
$$i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3 \sqrt{3}}{2}\right) + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + \frac{3 \sqrt{3}}{2}\right) + i \left(- \frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right) + i \left(\frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)$$
product
                /      ___              /    /     ___\\\              /    /     ___\\           /    ___              /    /     ___\\\              /    /     ___\\           /    ___              /    /     ___\\\              /    /     ___\\           /      ___              /    /     ___\\\              /    /     ___\\
          3     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|     3     |3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|     3     |3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|     3     |  3*\/ 3    4 _____    |atan\17*\/ 3 /||   4 _____    |atan\17*\/ 3 /|
2 * 4 * - - + I*|- ------- + \/ 217 *cos|--------------|| + \/ 217 *sin|--------------| * - - + I*|------- + \/ 217 *cos|--------------|| - \/ 217 *sin|--------------| * - - + I*|------- - \/ 217 *cos|--------------|| + \/ 217 *sin|--------------| * - - + I*|- ------- - \/ 217 *cos|--------------|| - \/ 217 *sin|--------------|
          2     \     2                 \      2       //              \      2       /     2     \   2                 \      2       //              \      2       /     2     \   2                 \      2       //              \      2       /     2     \     2                 \      2       //              \      2       /
$$\left(2\right) * \left(4\right) * \left(- \frac{3}{2} + \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + i \left(- \frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)\right) * \left(- \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3}{2} + i \left(\frac{3 \sqrt{3}}{2} + \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)}\right)\right) * \left(- \frac{3}{2} + \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} + \frac{3 \sqrt{3}}{2}\right)\right) * \left(- \sqrt[4]{217} \sin{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3}{2} + i \left(- \sqrt[4]{217} \cos{\left(\frac{\operatorname{atan}{\left(17 \sqrt{3} \right)}}{2} \right)} - \frac{3 \sqrt{3}}{2}\right)\right)$$
=
512
$$512$$
Numerical answer [src]
x1 = 1.16748194582983 + 0.161536067813473*i
x2 = 1.16748194582983 - 0.161536067813473*i
x3 = -4.16748194582983 + 5.3576884905201*i
x4 = -4.16748194582983 - 5.3576884905201*i
x5 = 2.0
x6 = 4.0
x6 = 4.0
The graph
x^6=(6x-8)^3 equation