Mister Exam

Other calculators

x^(log(x))=10000 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 log(x)        
x       = 10000
$$x^{\log{\left(x \right)}} = 10000$$
The graph
Rapid solution [src]
           _________
      -2*\/ log(10) 
x1 = e              
$$x_{1} = e^{- 2 \sqrt{\log{\left(10 \right)}}}$$
          _________
      2*\/ log(10) 
x2 = e             
$$x_{2} = e^{2 \sqrt{\log{\left(10 \right)}}}$$
x2 = exp(2*sqrt(log(10)))
Sum and product of roots [src]
sum
      _________        _________
 -2*\/ log(10)     2*\/ log(10) 
e               + e             
$$e^{- 2 \sqrt{\log{\left(10 \right)}}} + e^{2 \sqrt{\log{\left(10 \right)}}}$$
=
      _________        _________
 -2*\/ log(10)     2*\/ log(10) 
e               + e             
$$e^{- 2 \sqrt{\log{\left(10 \right)}}} + e^{2 \sqrt{\log{\left(10 \right)}}}$$
product
      _________      _________
 -2*\/ log(10)   2*\/ log(10) 
e              *e             
$$\frac{e^{2 \sqrt{\log{\left(10 \right)}}}}{e^{2 \sqrt{\log{\left(10 \right)}}}}$$
=
1
$$1$$
1
Numerical answer [src]
x1 = -68.3921524667838 - 12.3568387326607*i
x2 = 20.7979465602784
x3 = -68.3921524667838 + 12.3568387326607*i
x3 = -68.3921524667838 + 12.3568387326607*i