Mister Exam

Other calculators

x^4+x^3+3x^2+32x-10=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4    3      2                
x  + x  + 3*x  + 32*x - 10 = 0
$$\left(32 x + \left(3 x^{2} + \left(x^{4} + x^{3}\right)\right)\right) - 10 = 0$$
Rapid solution [src]
             ____
       3   \/ 13 
x1 = - - + ------
       2     2   
$$x_{1} = - \frac{3}{2} + \frac{\sqrt{13}}{2}$$
             ____
       3   \/ 13 
x2 = - - - ------
       2     2   
$$x_{2} = - \frac{\sqrt{13}}{2} - \frac{3}{2}$$
x3 = 1 - 3*I
$$x_{3} = 1 - 3 i$$
x4 = 1 + 3*I
$$x_{4} = 1 + 3 i$$
x4 = 1 + 3*i
Sum and product of roots [src]
sum
        ____           ____                    
  3   \/ 13      3   \/ 13                     
- - + ------ + - - - ------ + 1 - 3*I + 1 + 3*I
  2     2        2     2                       
$$\left(\left(\left(- \frac{\sqrt{13}}{2} - \frac{3}{2}\right) + \left(- \frac{3}{2} + \frac{\sqrt{13}}{2}\right)\right) + \left(1 - 3 i\right)\right) + \left(1 + 3 i\right)$$
=
-1
$$-1$$
product
/        ____\ /        ____\                    
|  3   \/ 13 | |  3   \/ 13 |                    
|- - + ------|*|- - - ------|*(1 - 3*I)*(1 + 3*I)
\  2     2   / \  2     2   /                    
$$\left(- \frac{3}{2} + \frac{\sqrt{13}}{2}\right) \left(- \frac{\sqrt{13}}{2} - \frac{3}{2}\right) \left(1 - 3 i\right) \left(1 + 3 i\right)$$
=
-10
$$-10$$
-10
Numerical answer [src]
x1 = 1.0 - 3.0*i
x2 = -3.30277563773199
x3 = 1.0 + 3.0*i
x4 = 0.302775637731995
x4 = 0.302775637731995