x^8+1=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
x 8 + 1 = 0 x^{8} + 1 = 0 x 8 + 1 = 0 Because equation degree is equal to = 8 and the free term = -1 < 0,
so the real solutions of the equation d'not exist
All other 8 root(s) is the complex numbers.
do replacement:
z = x z = x z = x then the equation will be the:
z 8 = − 1 z^{8} = -1 z 8 = − 1 Any complex number can presented so:
z = r e i p z = r e^{i p} z = r e i p substitute to the equation
r 8 e 8 i p = − 1 r^{8} e^{8 i p} = -1 r 8 e 8 i p = − 1 where
r = 1 r = 1 r = 1 - the magnitude of the complex number
Substitute r:
e 8 i p = − 1 e^{8 i p} = -1 e 8 i p = − 1 Using Euler’s formula, we find roots for p
i sin ( 8 p ) + cos ( 8 p ) = − 1 i \sin{\left(8 p \right)} + \cos{\left(8 p \right)} = -1 i sin ( 8 p ) + cos ( 8 p ) = − 1 so
cos ( 8 p ) = − 1 \cos{\left(8 p \right)} = -1 cos ( 8 p ) = − 1 and
sin ( 8 p ) = 0 \sin{\left(8 p \right)} = 0 sin ( 8 p ) = 0 then
p = π N 4 + π 8 p = \frac{\pi N}{4} + \frac{\pi}{8} p = 4 π N + 8 π where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
z 1 = − 1 2 − 2 4 + i 2 4 + 1 2 z_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} z 1 = − 2 1 − 4 2 + i 4 2 + 2 1 z 2 = 1 2 − 2 4 − i 2 4 + 1 2 z_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} z 2 = 2 1 − 4 2 − i 4 2 + 2 1 z 3 = − 2 4 + 1 2 − i 1 2 − 2 4 z_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} z 3 = − 4 2 + 2 1 − i 2 1 − 4 2 z 4 = 2 4 + 1 2 + i 1 2 − 2 4 z_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} z 4 = 4 2 + 2 1 + i 2 1 − 4 2 z 5 = − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + 2 i 1 2 − 2 4 2 + 2 i 2 4 + 1 2 2 z_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} z 5 = − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + 2 2 i 2 1 − 4 2 + 2 2 i 4 2 + 2 1 z 6 = 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 − 2 i 2 4 + 1 2 2 + 2 i 1 2 − 2 4 2 z_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} z 6 = 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 − 2 2 i 4 2 + 2 1 + 2 2 i 2 1 − 4 2 z 7 = − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 − 2 i 1 2 − 2 4 2 + 2 i 2 4 + 1 2 2 z_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} z 7 = − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 − 2 2 i 2 1 − 4 2 + 2 2 i 4 2 + 2 1 z 8 = − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 − 2 i 2 4 + 1 2 2 − 2 i 1 2 − 2 4 2 z_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} z 8 = − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 − 2 2 i 4 2 + 2 1 − 2 2 i 2 1 − 4 2 do backward replacement
z = x z = x z = x x = z x = z x = z The final answer:
x 1 = − 1 2 − 2 4 + i 2 4 + 1 2 x_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 1 = − 2 1 − 4 2 + i 4 2 + 2 1 x 2 = 1 2 − 2 4 − i 2 4 + 1 2 x_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 2 = 2 1 − 4 2 − i 4 2 + 2 1 x 3 = − 2 4 + 1 2 − i 1 2 − 2 4 x_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} x 3 = − 4 2 + 2 1 − i 2 1 − 4 2 x 4 = 2 4 + 1 2 + i 1 2 − 2 4 x_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} x 4 = 4 2 + 2 1 + i 2 1 − 4 2 x 5 = − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + 2 i 1 2 − 2 4 2 + 2 i 2 4 + 1 2 2 x_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} x 5 = − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + 2 2 i 2 1 − 4 2 + 2 2 i 4 2 + 2 1 x 6 = 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 − 2 i 2 4 + 1 2 2 + 2 i 1 2 − 2 4 2 x_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} x 6 = 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 − 2 2 i 4 2 + 2 1 + 2 2 i 2 1 − 4 2 x 7 = − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 − 2 i 1 2 − 2 4 2 + 2 i 2 4 + 1 2 2 x_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} x 7 = − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 − 2 2 i 2 1 − 4 2 + 2 2 i 4 2 + 2 1 x 8 = − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 − 2 i 2 4 + 1 2 2 − 2 i 1 2 − 2 4 2 x_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} x 8 = − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 − 2 2 i 4 2 + 2 1 − 2 2 i 2 1 − 4 2
The graph
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 0 20
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x1 = - / - - ----- + I* / - + -----
\/ 2 4 \/ 2 4
x 1 = − 1 2 − 2 4 + i 2 4 + 1 2 x_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 1 = − 2 1 − 4 2 + i 4 2 + 2 1
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x2 = / - - ----- - I* / - + -----
\/ 2 4 \/ 2 4
x 2 = 1 2 − 2 4 − i 2 4 + 1 2 x_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 2 = 2 1 − 4 2 − i 4 2 + 2 1
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x3 = - / - + ----- - I* / - - -----
\/ 2 4 \/ 2 4
x 3 = − 2 4 + 1 2 − i 1 2 − 2 4 x_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} x 3 = − 4 2 + 2 1 − i 2 1 − 4 2
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x4 = / - + ----- + I* / - - -----
\/ 2 4 \/ 2 4
x 4 = 2 4 + 1 2 + i 1 2 − 2 4 x_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} x 4 = 4 2 + 2 1 + i 2 1 − 4 2
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
|\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - + ----- \/ 2 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x5 = I*|---------------------- + ----------------------| + ---------------------- - ----------------------
\ 2 2 / 2 2
x 5 = − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + i ( 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) x_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) x 5 = − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
|\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x6 = I*|---------------------- - ----------------------| + ---------------------- + ----------------------
\ 2 2 / 2 2
x 6 = 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + i ( − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 ) x_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) x 6 = 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
|\/ 2 * / - + ----- \/ 2 * / - - ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x7 = I*|---------------------- - ----------------------| - ---------------------- - ----------------------
\ 2 2 / 2 2
x 7 = − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 + i ( − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) x_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) x 7 = − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 + i − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
| \/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x8 = I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------
\ 2 2 / 2 2
x 8 = − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 + i ( − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 ) x_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) x 8 = − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 + i − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2
x8 = -sqrt(2)*sqrt(sqrt(2)/4 + 1/2)/2 + sqrt(2)*sqrt(1/2 - sqrt(2)/4)/2 + i*(-sqrt(2)*sqrt(sqrt(2)/4 + 1/2)/2 - sqrt(2)*sqrt(1/2 - sqrt(2)/4)/2)
Sum and product of roots
[src]
/ ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___
___________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
/ ___ / ___ / ___ / ___ / ___ / ___ / ___ / ___ |\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - + ----- \/ 2 * / - - ----- |\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + ----- |\/ 2 * / - + ----- \/ 2 * / - - ----- | \/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
/ 1 \/ 2 / 1 \/ 2 / 1 \/ 2 / 1 \/ 2 / 1 \/ 2 / 1 \/ 2 / 1 \/ 2 / 1 \/ 2 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
- / - - ----- + I* / - + ----- + / - - ----- - I* / - + ----- + - / - + ----- - I* / - - ----- + / - + ----- + I* / - - ----- + I*|---------------------- + ----------------------| + ---------------------- - ---------------------- + I*|---------------------- - ----------------------| + ---------------------- + ---------------------- + I*|---------------------- - ----------------------| - ---------------------- - ---------------------- + I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------
\/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \ 2 2 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2
( − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 + i ( − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 ) ) + ( ( − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 + i ( − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) ) + ( ( 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + i ( − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 ) ) + ( ( ( ( − 2 4 + 1 2 − i 1 2 − 2 4 ) + ( ( 1 2 − 2 4 − i 2 4 + 1 2 ) + ( − 1 2 − 2 4 + i 2 4 + 1 2 ) ) ) + ( 2 4 + 1 2 + i 1 2 − 2 4 ) ) + ( − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + i ( 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) ) ) ) ) \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) + \left(\left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) + \left(\left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) + \left(\left(\left(\left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) + \left(\left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) + \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right)\right) + \left(\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right) + \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right)\right)\right)\right) − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 + i − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 + − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 + i − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 + − 4 2 + 2 1 − i 2 1 − 4 2 + 2 1 − 4 2 − i 4 2 + 2 1 + − 2 1 − 4 2 + i 4 2 + 2 1 + 4 2 + 2 1 + i 2 1 − 4 2 + − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ |
| ___ / 1 \/ 2 ___ / 1 \/ 2 | | ___ / 1 \/ 2 ___ / 1 \/ 2 | | ___ / 1 \/ 2 ___ / 1 \/ 2 | | ___ / 1 \/ 2 ___ / 1 \/ 2 |
|\/ 2 * / - - ----- \/ 2 * / - + ----- | |\/ 2 * / - - ----- \/ 2 * / - + ----- | |\/ 2 * / - + ----- \/ 2 * / - - ----- | | \/ 2 * / - - ----- \/ 2 * / - + ----- |
| \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 |
I*|---------------------- + ----------------------| + I*|---------------------- - ----------------------| + I*|---------------------- - ----------------------| + I*|- ---------------------- - ----------------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 /
i ( − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 ) + i ( − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 ) + i ( − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) + i ( 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) i − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 + i − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 + i − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1
/ / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\
| | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ |
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\ | | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | | | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | | | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 | | | ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2 |
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | |\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - + ----- \/ 2 * / - - ----- | | |\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + ----- | | |\/ 2 * / - + ----- \/ 2 * / - - ----- | \/ 2 * / - - ----- \/ 2 * / - + ----- | | | \/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + ----- |
| / 1 \/ 2 / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 |
|- / - - ----- + I* / - + ----- |*| / - - ----- - I* / - + ----- |*|- / - + ----- - I* / - - ----- |*| / - + ----- + I* / - - ----- |*|I*|---------------------- + ----------------------| + ---------------------- - ----------------------|*|I*|---------------------- - ----------------------| + ---------------------- + ----------------------|*|I*|---------------------- - ----------------------| - ---------------------- - ----------------------|*|I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------|
\ \/ 2 4 \/ 2 4 / \\/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \\/ 2 4 \/ 2 4 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 /
( − 1 2 − 2 4 + i 2 4 + 1 2 ) ( 1 2 − 2 4 − i 2 4 + 1 2 ) ( − 2 4 + 1 2 − i 1 2 − 2 4 ) ( 2 4 + 1 2 + i 1 2 − 2 4 ) ( − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + i ( 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) ) ( 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 + i ( − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 ) ) ( − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 + i ( − 2 1 2 − 2 4 2 + 2 2 4 + 1 2 2 ) ) ( − 2 2 4 + 1 2 2 + 2 1 2 − 2 4 2 + i ( − 2 2 4 + 1 2 2 − 2 1 2 − 2 4 2 ) ) \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) − 2 1 − 4 2 + i 4 2 + 2 1 2 1 − 4 2 − i 4 2 + 2 1 − 4 2 + 2 1 − i 2 1 − 4 2 4 2 + 2 1 + i 2 1 − 4 2 − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 + i − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2 + i − 2 2 2 1 − 4 2 + 2 2 4 2 + 2 1 − 2 2 4 2 + 2 1 + 2 2 2 1 − 4 2 + i − 2 2 4 2 + 2 1 − 2 2 2 1 − 4 2
x1 = -0.38268343236509 + 0.923879532511287*i
x2 = -0.38268343236509 - 0.923879532511287*i
x3 = -0.923879532511287 - 0.38268343236509*i
x4 = 0.923879532511287 - 0.38268343236509*i
x5 = -0.923879532511287 + 0.38268343236509*i
x6 = 0.38268343236509 - 0.923879532511287*i
x7 = 0.38268343236509 + 0.923879532511287*i
x8 = 0.923879532511287 + 0.38268343236509*i
x8 = 0.923879532511287 + 0.38268343236509*i