Mister Exam

Other calculators


x^8+1=0

x^8+1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 8        
x  + 1 = 0
$$x^{8} + 1 = 0$$
Detail solution
Given the equation
$$x^{8} + 1 = 0$$
Because equation degree is equal to = 8 and the free term = -1 < 0,
so the real solutions of the equation d'not exist

All other 8 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$z^{8} = -1$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$r^{8} e^{8 i p} = -1$$
where
$$r = 1$$
- the magnitude of the complex number
Substitute r:
$$e^{8 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(8 p \right)} + \cos{\left(8 p \right)} = -1$$
so
$$\cos{\left(8 p \right)} = -1$$
and
$$\sin{\left(8 p \right)} = 0$$
then
$$p = \frac{\pi N}{4} + \frac{\pi}{8}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$z_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
do backward replacement
$$z = x$$
$$x = z$$

The final answer:
$$x_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$x_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$x_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$x_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
The graph
Rapid solution [src]
            ___________          ___________
           /       ___          /       ___ 
          /  1   \/ 2          /  1   \/ 2  
x1 = -   /   - - -----  + I*  /   - + ----- 
       \/    2     4        \/    2     4   
$$x_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
          ___________          ___________
         /       ___          /       ___ 
        /  1   \/ 2          /  1   \/ 2  
x2 =   /   - - -----  - I*  /   - + ----- 
     \/    2     4        \/    2     4   
$$x_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
            ___________          ___________
           /       ___          /       ___ 
          /  1   \/ 2          /  1   \/ 2  
x3 = -   /   - + -----  - I*  /   - - ----- 
       \/    2     4        \/    2     4   
$$x_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
          ___________          ___________
         /       ___          /       ___ 
        /  1   \/ 2          /  1   \/ 2  
x4 =   /   - + -----  + I*  /   - - ----- 
     \/    2     4        \/    2     4   
$$x_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
       /           ___________              ___________\              ___________              ___________
       |          /       ___              /       ___ |             /       ___              /       ___ 
       |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  
       |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - + -----    \/ 2 *  /   - - ----- 
       |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   
x5 = I*|---------------------- + ----------------------| + ---------------------- - ----------------------
       \          2                        2           /             2                        2           
$$x_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
       /           ___________              ___________\              ___________              ___________
       |          /       ___              /       ___ |             /       ___              /       ___ 
       |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  
       |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- 
       |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   
x6 = I*|---------------------- - ----------------------| + ---------------------- + ----------------------
       \          2                        2           /             2                        2           
$$x_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
       /           ___________              ___________\              ___________              ___________
       |          /       ___              /       ___ |             /       ___              /       ___ 
       |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  
       |\/ 2 *  /   - + -----    \/ 2 *  /   - - ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- 
       |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   
x7 = I*|---------------------- - ----------------------| - ---------------------- - ----------------------
       \          2                        2           /             2                        2           
$$x_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
       /             ___________              ___________\              ___________              ___________
       |            /       ___              /       ___ |             /       ___              /       ___ 
       |    ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  
       |  \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- 
       |        \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   
x8 = I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------
       \            2                        2           /             2                        2           
$$x_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
x8 = -sqrt(2)*sqrt(sqrt(2)/4 + 1/2)/2 + sqrt(2)*sqrt(1/2 - sqrt(2)/4)/2 + i*(-sqrt(2)*sqrt(sqrt(2)/4 + 1/2)/2 - sqrt(2)*sqrt(1/2 - sqrt(2)/4)/2)
Sum and product of roots [src]
sum
                                                                                                                                                                      /           ___________              ___________\              ___________              ___________     /           ___________              ___________\              ___________              ___________     /           ___________              ___________\              ___________              ___________     /             ___________              ___________\              ___________              ___________
                                                                                                                                                                      |          /       ___              /       ___ |             /       ___              /       ___      |          /       ___              /       ___ |             /       ___              /       ___      |          /       ___              /       ___ |             /       ___              /       ___      |            /       ___              /       ___ |             /       ___              /       ___ 
       ___________          ___________        ___________          ___________          ___________          ___________        ___________          ___________     |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2       |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2       |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2       |    ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  
      /       ___          /       ___        /       ___          /       ___          /       ___          /       ___        /       ___          /       ___      |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - + -----    \/ 2 *  /   - - -----      |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + -----      |\/ 2 *  /   - + -----    \/ 2 *  /   - - ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + -----      |  \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- 
     /  1   \/ 2          /  1   \/ 2        /  1   \/ 2          /  1   \/ 2          /  1   \/ 2          /  1   \/ 2        /  1   \/ 2          /  1   \/ 2       |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4        |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4        |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4        |        \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   
-   /   - - -----  + I*  /   - + -----  +   /   - - -----  - I*  /   - + -----  + -   /   - + -----  - I*  /   - - -----  +   /   - + -----  + I*  /   - - -----  + I*|---------------------- + ----------------------| + ---------------------- - ---------------------- + I*|---------------------- - ----------------------| + ---------------------- + ---------------------- + I*|---------------------- - ----------------------| - ---------------------- - ---------------------- + I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------
  \/    2     4        \/    2     4      \/    2     4        \/    2     4        \/    2     4        \/    2     4      \/    2     4        \/    2     4        \          2                        2           /             2                        2                \          2                        2           /             2                        2                \          2                        2           /             2                        2                \            2                        2           /             2                        2           
$$\left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) + \left(\left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) + \left(\left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) + \left(\left(\left(\left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) + \left(\left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) + \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right)\right) + \left(\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right) + \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right)\right)\right)\right)$$
=
  /           ___________              ___________\     /           ___________              ___________\     /           ___________              ___________\     /             ___________              ___________\
  |          /       ___              /       ___ |     |          /       ___              /       ___ |     |          /       ___              /       ___ |     |            /       ___              /       ___ |
  |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     |    ___    /  1   \/ 2       ___    /  1   \/ 2  |
  |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |     |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |     |\/ 2 *  /   - + -----    \/ 2 *  /   - - ----- |     |  \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |
  |      \/    2     4            \/    2     4   |     |      \/    2     4            \/    2     4   |     |      \/    2     4            \/    2     4   |     |        \/    2     4            \/    2     4   |
I*|---------------------- + ----------------------| + I*|---------------------- - ----------------------| + I*|---------------------- - ----------------------| + I*|- ---------------------- - ----------------------|
  \          2                        2           /     \          2                        2           /     \          2                        2           /     \            2                        2           /
$$i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
product
                                                                                                                                                                    /  /           ___________              ___________\              ___________              ___________\ /  /           ___________              ___________\              ___________              ___________\ /  /           ___________              ___________\              ___________              ___________\ /  /             ___________              ___________\              ___________              ___________\
                                                                                                                                                                    |  |          /       ___              /       ___ |             /       ___              /       ___ | |  |          /       ___              /       ___ |             /       ___              /       ___ | |  |          /       ___              /       ___ |             /       ___              /       ___ | |  |            /       ___              /       ___ |             /       ___              /       ___ |
/       ___________          ___________\ /     ___________          ___________\ /       ___________          ___________\ /     ___________          ___________\ |  |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  | |  |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  | |  |  ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  | |  |    ___    /  1   \/ 2       ___    /  1   \/ 2  |     ___    /  1   \/ 2       ___    /  1   \/ 2  |
|      /       ___          /       ___ | |    /       ___          /       ___ | |      /       ___          /       ___ | |    /       ___          /       ___ | |  |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - + -----    \/ 2 *  /   - - ----- | |  |\/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- | |  |\/ 2 *  /   - + -----    \/ 2 *  /   - - ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- | |  |  \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |   \/ 2 *  /   - - -----    \/ 2 *  /   - + ----- |
|     /  1   \/ 2          /  1   \/ 2  | |   /  1   \/ 2          /  1   \/ 2  | |     /  1   \/ 2          /  1   \/ 2  | |   /  1   \/ 2          /  1   \/ 2  | |  |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   | |  |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   | |  |      \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   | |  |        \/    2     4            \/    2     4   |         \/    2     4            \/    2     4   |
|-   /   - - -----  + I*  /   - + ----- |*|  /   - - -----  - I*  /   - + ----- |*|-   /   - + -----  - I*  /   - - ----- |*|  /   - + -----  + I*  /   - - ----- |*|I*|---------------------- + ----------------------| + ---------------------- - ----------------------|*|I*|---------------------- - ----------------------| + ---------------------- + ----------------------|*|I*|---------------------- - ----------------------| - ---------------------- - ----------------------|*|I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------|
\  \/    2     4        \/    2     4   / \\/    2     4        \/    2     4   / \  \/    2     4        \/    2     4   / \\/    2     4        \/    2     4   / \  \          2                        2           /             2                        2           / \  \          2                        2           /             2                        2           / \  \          2                        2           /             2                        2           / \  \            2                        2           /             2                        2           /
$$\left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right)$$
=
1
$$1$$
1
Numerical answer [src]
x1 = -0.38268343236509 + 0.923879532511287*i
x2 = -0.38268343236509 - 0.923879532511287*i
x3 = -0.923879532511287 - 0.38268343236509*i
x4 = 0.923879532511287 - 0.38268343236509*i
x5 = -0.923879532511287 + 0.38268343236509*i
x6 = 0.38268343236509 - 0.923879532511287*i
x7 = 0.38268343236509 + 0.923879532511287*i
x8 = 0.923879532511287 + 0.38268343236509*i
x8 = 0.923879532511287 + 0.38268343236509*i
The graph
x^8+1=0 equation