Mister Exam

Other calculators

(x+3)(x-4)-18=18 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(x + 3)*(x - 4) - 18 = 18
$$\left(x - 4\right) \left(x + 3\right) - 18 = 18$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$\left(x - 4\right) \left(x + 3\right) - 18 = 18$$
to
$$\left(\left(x - 4\right) \left(x + 3\right) - 18\right) - 18 = 0$$
Expand the expression in the equation
$$\left(\left(x - 4\right) \left(x + 3\right) - 18\right) - 18 = 0$$
We get the quadratic equation
$$x^{2} - x - 48 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -1$$
$$c = -48$$
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (1) * (-48) = 193

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{1}{2} + \frac{\sqrt{193}}{2}$$
$$x_{2} = \frac{1}{2} - \frac{\sqrt{193}}{2}$$
The graph
Rapid solution [src]
           _____
     1   \/ 193 
x1 = - - -------
     2      2   
$$x_{1} = \frac{1}{2} - \frac{\sqrt{193}}{2}$$
           _____
     1   \/ 193 
x2 = - + -------
     2      2   
$$x_{2} = \frac{1}{2} + \frac{\sqrt{193}}{2}$$
x2 = 1/2 + sqrt(193)/2
Sum and product of roots [src]
sum
      _____         _____
1   \/ 193    1   \/ 193 
- - ------- + - + -------
2      2      2      2   
$$\left(\frac{1}{2} - \frac{\sqrt{193}}{2}\right) + \left(\frac{1}{2} + \frac{\sqrt{193}}{2}\right)$$
=
1
$$1$$
product
/      _____\ /      _____\
|1   \/ 193 | |1   \/ 193 |
|- - -------|*|- + -------|
\2      2   / \2      2   /
$$\left(\frac{1}{2} - \frac{\sqrt{193}}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{193}}{2}\right)$$
=
-48
$$-48$$
-48
Numerical answer [src]
x1 = -6.4462219947249
x2 = 7.4462219947249
x2 = 7.4462219947249