Expand the expression in the equation
$$\left(- 5 x - 9\right) \left(x + 6\right) = 0$$
We get the quadratic equation
$$- 5 x^{2} - 39 x - 54 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -5$$
$$b = -39$$
$$c = -54$$
, then
D = b^2 - 4 * a * c =
(-39)^2 - 4 * (-5) * (-54) = 441
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = -6$$
$$x_{2} = - \frac{9}{5}$$