Mister Exam

Other calculators

x*ln(6)-ln(x/pi)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
              /x \    
x*log(6) - log|--| = 0
              \pi/    
xlog(6)log(xπ)=0x \log{\left(6 \right)} - \log{\left(\frac{x}{\pi} \right)} = 0
The graph
-12.5-10.0-7.5-5.0-2.50.02.55.07.515.010.012.5020
Rapid solution [src]
       re(W(-pi*log(6)))   I*im(W(-pi*log(6)))
x1 = - ----------------- - -------------------
             log(6)               log(6)      
x1=re(W(πlog(6)))log(6)iim(W(πlog(6)))log(6)x_{1} = - \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}
x1 = -re(LambertW(-pi*log(6)))/log(6) - i*im(LambertW(-pi*log(6)))/log(6)
Sum and product of roots [src]
sum
  re(W(-pi*log(6)))   I*im(W(-pi*log(6)))
- ----------------- - -------------------
        log(6)               log(6)      
re(W(πlog(6)))log(6)iim(W(πlog(6)))log(6)- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}
=
  re(W(-pi*log(6)))   I*im(W(-pi*log(6)))
- ----------------- - -------------------
        log(6)               log(6)      
re(W(πlog(6)))log(6)iim(W(πlog(6)))log(6)- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}
product
  re(W(-pi*log(6)))   I*im(W(-pi*log(6)))
- ----------------- - -------------------
        log(6)               log(6)      
re(W(πlog(6)))log(6)iim(W(πlog(6)))log(6)- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}
=
-(I*im(W(-pi*log(6))) + re(W(-pi*log(6)))) 
-------------------------------------------
                   log(6)                  
re(W(πlog(6)))+iim(W(πlog(6)))log(6)- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)} + i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}
-(i*im(LambertW(-pi*log(6))) + re(LambertW(-pi*log(6))))/log(6)
Numerical answer [src]
x1 = -0.521061360978882 + 1.1197540183224*i
x1 = -0.521061360978882 + 1.1197540183224*i