x*ln(6)-ln(x/pi)=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
The graph
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
x1 = - ----------------- - -------------------
log(6) log(6)
x1=−log(6)re(W(−πlog(6)))−log(6)iim(W(−πlog(6)))
x1 = -re(LambertW(-pi*log(6)))/log(6) - i*im(LambertW(-pi*log(6)))/log(6)
Sum and product of roots
[src]
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
- ----------------- - -------------------
log(6) log(6)
−log(6)re(W(−πlog(6)))−log(6)iim(W(−πlog(6)))
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
- ----------------- - -------------------
log(6) log(6)
−log(6)re(W(−πlog(6)))−log(6)iim(W(−πlog(6)))
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
- ----------------- - -------------------
log(6) log(6)
−log(6)re(W(−πlog(6)))−log(6)iim(W(−πlog(6)))
-(I*im(W(-pi*log(6))) + re(W(-pi*log(6))))
-------------------------------------------
log(6)
−log(6)re(W(−πlog(6)))+iim(W(−πlog(6)))
-(i*im(LambertW(-pi*log(6))) + re(LambertW(-pi*log(6))))/log(6)
x1 = -0.521061360978882 + 1.1197540183224*i
x1 = -0.521061360978882 + 1.1197540183224*i