x*ln(6)-ln(x/pi)=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
x1 = - ----------------- - -------------------
log(6) log(6)
$$x_{1} = - \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}$$
x1 = -re(LambertW(-pi*log(6)))/log(6) - i*im(LambertW(-pi*log(6)))/log(6)
Sum and product of roots
[src]
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
- ----------------- - -------------------
log(6) log(6)
$$- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}$$
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
- ----------------- - -------------------
log(6) log(6)
$$- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}$$
re(W(-pi*log(6))) I*im(W(-pi*log(6)))
- ----------------- - -------------------
log(6) log(6)
$$- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}$$
-(I*im(W(-pi*log(6))) + re(W(-pi*log(6))))
-------------------------------------------
log(6)
$$- \frac{\operatorname{re}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)} + i \operatorname{im}{\left(W\left(- \pi \log{\left(6 \right)}\right)\right)}}{\log{\left(6 \right)}}$$
-(i*im(LambertW(-pi*log(6))) + re(LambertW(-pi*log(6))))/log(6)
x1 = -0.521061360978882 + 1.1197540183224*i
x1 = -0.521061360978882 + 1.1197540183224*i