Mister Exam

Other calculators

(x-1)/3=(y+1)/4 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
x - 1   y + 1
----- = -----
  3       4  
$$\frac{x - 1}{3} = \frac{y + 1}{4}$$
Detail solution
Given the linear equation:
(x-1)/3 = (y+1)/4

Expand brackets in the left part
x/3-1/3 = (y+1)/4

Expand brackets in the right part
x/3-1/3 = y/4+1/4

Move free summands (without x)
from left part to right part, we given:
$$\frac{x}{3} = \frac{y}{4} + \frac{7}{12}$$
Divide both parts of the equation by 1/3
x = 7/12 + y/4 / (1/3)

We get the answer: x = 7/4 + 3*y/4
The graph
Rapid solution [src]
     7   3*re(y)   3*I*im(y)
x1 = - + ------- + ---------
     4      4          4    
$$x_{1} = \frac{3 \operatorname{re}{\left(y\right)}}{4} + \frac{3 i \operatorname{im}{\left(y\right)}}{4} + \frac{7}{4}$$
x1 = 3*re(y)/4 + 3*i*im(y)/4 + 7/4
Sum and product of roots [src]
sum
7   3*re(y)   3*I*im(y)
- + ------- + ---------
4      4          4    
$$\frac{3 \operatorname{re}{\left(y\right)}}{4} + \frac{3 i \operatorname{im}{\left(y\right)}}{4} + \frac{7}{4}$$
=
7   3*re(y)   3*I*im(y)
- + ------- + ---------
4      4          4    
$$\frac{3 \operatorname{re}{\left(y\right)}}{4} + \frac{3 i \operatorname{im}{\left(y\right)}}{4} + \frac{7}{4}$$
product
7   3*re(y)   3*I*im(y)
- + ------- + ---------
4      4          4    
$$\frac{3 \operatorname{re}{\left(y\right)}}{4} + \frac{3 i \operatorname{im}{\left(y\right)}}{4} + \frac{7}{4}$$
=
7   3*re(y)   3*I*im(y)
- + ------- + ---------
4      4          4    
$$\frac{3 \operatorname{re}{\left(y\right)}}{4} + \frac{3 i \operatorname{im}{\left(y\right)}}{4} + \frac{7}{4}$$
7/4 + 3*re(y)/4 + 3*i*im(y)/4