Mister Exam

Other calculators

x=42+(4/7xx) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
         4*x  
x = 42 + ---*x
          7   
$$x = \frac{4 x}{7} x + 42$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$x = \frac{4 x}{7} x + 42$$
to
$$x + \left(- \frac{4 x}{7} x - 42\right) = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = - \frac{4}{7}$$
$$b = 1$$
$$c = -42$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (-4/7) * (-42) = -95

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{7}{8} - \frac{7 \sqrt{95} i}{8}$$
$$x_{2} = \frac{7}{8} + \frac{7 \sqrt{95} i}{8}$$
Vieta's Theorem
rewrite the equation
$$x = \frac{4 x}{7} x + 42$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{7 x}{4} + \frac{147}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{7}{4}$$
$$q = \frac{c}{a}$$
$$q = \frac{147}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{7}{4}$$
$$x_{1} x_{2} = \frac{147}{2}$$
The graph
Sum and product of roots [src]
sum
          ____             ____
7   7*I*\/ 95    7   7*I*\/ 95 
- - ---------- + - + ----------
8       8        8       8     
$$\left(\frac{7}{8} - \frac{7 \sqrt{95} i}{8}\right) + \left(\frac{7}{8} + \frac{7 \sqrt{95} i}{8}\right)$$
=
7/4
$$\frac{7}{4}$$
product
/          ____\ /          ____\
|7   7*I*\/ 95 | |7   7*I*\/ 95 |
|- - ----------|*|- + ----------|
\8       8     / \8       8     /
$$\left(\frac{7}{8} - \frac{7 \sqrt{95} i}{8}\right) \left(\frac{7}{8} + \frac{7 \sqrt{95} i}{8}\right)$$
=
147/2
$$\frac{147}{2}$$
147/2
Rapid solution [src]
               ____
     7   7*I*\/ 95 
x1 = - - ----------
     8       8     
$$x_{1} = \frac{7}{8} - \frac{7 \sqrt{95} i}{8}$$
               ____
     7   7*I*\/ 95 
x2 = - + ----------
     8       8     
$$x_{2} = \frac{7}{8} + \frac{7 \sqrt{95} i}{8}$$
x2 = 7/8 + 7*sqrt(95)*i/8
Numerical answer [src]
x1 = 0.875 + 8.52844505170784*i
x2 = 0.875 - 8.52844505170784*i
x2 = 0.875 - 8.52844505170784*i