Mister Exam

Other calculators

x.diff(x)+(3/y)*x=2*y equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
//x  for 0 = 1\            
||            |   3        
|<1  for 1 = 1| + -*x = 2*y
||            |   y        
\\0  otherwise/            
$$x \frac{3}{y} + \begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = 2 y$$
Detail solution
Given the equation:
$$x \frac{3}{y} + \begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = 2 y$$
Multiply the equation sides by the denominators:
and y
we get:
$$y \left(x \frac{3}{y} + \begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}\right) = y 2 y$$
$$3 x + y = 2 y^{2}$$
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$3 x + y = 2 y^{2}$$
to
$$3 x - 2 y^{2} + y = 0$$
This equation is of the form
a*y^2 + b*y + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$y_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$y_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -2$$
$$b = 1$$
$$c = 3 x$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (-2) * (3*x) = 1 + 24*x

The equation has two roots.
y1 = (-b + sqrt(D)) / (2*a)

y2 = (-b - sqrt(D)) / (2*a)

or
$$y_{1} = \frac{1}{4} - \frac{\sqrt{24 x + 1}}{4}$$
$$y_{2} = \frac{\sqrt{24 x + 1}}{4} + \frac{1}{4}$$
The graph
Sum and product of roots [src]
sum
       ______________________________                                           ______________________________                                             ______________________________                                           ______________________________                                   
    4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\     4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\       4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\     4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\
    \/  (1 + 24*re(x))  + 576*im (x) *cos|-----------------------------|   I*\/  (1 + 24*re(x))  + 576*im (x) *sin|-----------------------------|       \/  (1 + 24*re(x))  + 576*im (x) *cos|-----------------------------|   I*\/  (1 + 24*re(x))  + 576*im (x) *sin|-----------------------------|
1                                        \              2              /                                          \              2              /   1                                        \              2              /                                          \              2              /
- - -------------------------------------------------------------------- - ---------------------------------------------------------------------- + - + -------------------------------------------------------------------- + ----------------------------------------------------------------------
4                                    4                                                                       4                                      4                                    4                                                                       4                                   
$$\left(- \frac{i \sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} - \frac{\sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{1}{4}\right) + \left(\frac{i \sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{\sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{1}{4}\right)$$
=
1/2
$$\frac{1}{2}$$
product
/       ______________________________                                           ______________________________                                   \ /       ______________________________                                           ______________________________                                   \
|    4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\     4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\| |    4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\     4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\|
|    \/  (1 + 24*re(x))  + 576*im (x) *cos|-----------------------------|   I*\/  (1 + 24*re(x))  + 576*im (x) *sin|-----------------------------|| |    \/  (1 + 24*re(x))  + 576*im (x) *cos|-----------------------------|   I*\/  (1 + 24*re(x))  + 576*im (x) *sin|-----------------------------||
|1                                        \              2              /                                          \              2              /| |1                                        \              2              /                                          \              2              /|
|- - -------------------------------------------------------------------- - ----------------------------------------------------------------------|*|- + -------------------------------------------------------------------- + ----------------------------------------------------------------------|
\4                                    4                                                                       4                                   / \4                                    4                                                                       4                                   /
$$\left(- \frac{i \sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} - \frac{\sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{1}{4}\right) \left(\frac{i \sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{\sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{1}{4}\right)$$
=
  3*re(x)   3*I*im(x)
- ------- - ---------
     2          2    
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2}$$
-3*re(x)/2 - 3*i*im(x)/2
Rapid solution [src]
            ______________________________                                           ______________________________                                   
         4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\     4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\
         \/  (1 + 24*re(x))  + 576*im (x) *cos|-----------------------------|   I*\/  (1 + 24*re(x))  + 576*im (x) *sin|-----------------------------|
     1                                        \              2              /                                          \              2              /
y1 = - - -------------------------------------------------------------------- - ----------------------------------------------------------------------
     4                                    4                                                                       4                                   
$$y_{1} = - \frac{i \sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} - \frac{\sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{1}{4}$$
            ______________________________                                           ______________________________                                   
         4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\     4 /               2         2        /atan2(24*im(x), 1 + 24*re(x))\
         \/  (1 + 24*re(x))  + 576*im (x) *cos|-----------------------------|   I*\/  (1 + 24*re(x))  + 576*im (x) *sin|-----------------------------|
     1                                        \              2              /                                          \              2              /
y2 = - + -------------------------------------------------------------------- + ----------------------------------------------------------------------
     4                                    4                                                                       4                                   
$$y_{2} = \frac{i \sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{\sqrt[4]{\left(24 \operatorname{re}{\left(x\right)} + 1\right)^{2} + 576 \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(24 \operatorname{im}{\left(x\right)},24 \operatorname{re}{\left(x\right)} + 1 \right)}}{2} \right)}}{4} + \frac{1}{4}$$
y2 = i*((24*re(x) + 1)^2 + 576*im(x)^2)^(1/4)*sin(atan2(24*im(x, 24*re(x) + 1)/2)/4 + ((24*re(x) + 1)^2 + 576*im(x)^2)^(1/4)*cos(atan2(24*im(x), 24*re(x) + 1)/2)/4 + 1/4)