Mister Exam

Other calculators

x.diff(x)*y=y*log(y/x) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
//x  for 0 = 1\             
||            |          /y\
|<1  for 1 = 1|*y = y*log|-|
||            |          \x/
\\0  otherwise/             
y({xfor0=11for1=10otherwise)=ylog(yx)y \left(\begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}\right) = y \log{\left(\frac{y}{x} \right)}
The graph
Rapid solution [src]
y1 = E*re(x) + E*I*im(x)
y1=ere(x)+eiim(x)y_{1} = e \operatorname{re}{\left(x\right)} + e i \operatorname{im}{\left(x\right)}
y1 = E*re(x) + E*i*im(x)
Sum and product of roots [src]
sum
E*re(x) + E*I*im(x)
ere(x)+eiim(x)e \operatorname{re}{\left(x\right)} + e i \operatorname{im}{\left(x\right)}
=
E*re(x) + E*I*im(x)
ere(x)+eiim(x)e \operatorname{re}{\left(x\right)} + e i \operatorname{im}{\left(x\right)}
product
E*re(x) + E*I*im(x)
ere(x)+eiim(x)e \operatorname{re}{\left(x\right)} + e i \operatorname{im}{\left(x\right)}
=
E*(I*im(x) + re(x))
e(re(x)+iim(x))e \left(\operatorname{re}{\left(x\right)} + i \operatorname{im}{\left(x\right)}\right)
E*(i*im(x) + re(x))