Mister Exam

Other calculators

x4-17x2+16=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
x4 - 17*x2 + 16 = 0
$$\left(- 17 x_{2} + x_{4}\right) + 16 = 0$$
Detail solution
Given the linear equation:
x4-17*x2+16 = 0

Looking for similar summands in the left part:
16 + x4 - 17*x2 = 0

Move free summands (without x4)
from left part to right part, we given:
$$- 17 x_{2} + x_{4} = -16$$
Move the summands with the other variables
from left part to right part, we given:
$$\left(-17\right) x_{2} = - x_{4} - 16$$
Divide both parts of the equation by -17*x2/x4
x4 = -16 - x4 / (-17*x2/x4)

We get the answer: x4 = -16 + 17*x2
The graph
Rapid solution [src]
x41 = -16 + 17*re(x2) + 17*I*im(x2)
$$x_{41} = 17 \operatorname{re}{\left(x_{2}\right)} + 17 i \operatorname{im}{\left(x_{2}\right)} - 16$$
x41 = 17*re(x2) + 17*i*im(x2) - 16
Sum and product of roots [src]
sum
-16 + 17*re(x2) + 17*I*im(x2)
$$17 \operatorname{re}{\left(x_{2}\right)} + 17 i \operatorname{im}{\left(x_{2}\right)} - 16$$
=
-16 + 17*re(x2) + 17*I*im(x2)
$$17 \operatorname{re}{\left(x_{2}\right)} + 17 i \operatorname{im}{\left(x_{2}\right)} - 16$$
product
-16 + 17*re(x2) + 17*I*im(x2)
$$17 \operatorname{re}{\left(x_{2}\right)} + 17 i \operatorname{im}{\left(x_{2}\right)} - 16$$
=
-16 + 17*re(x2) + 17*I*im(x2)
$$17 \operatorname{re}{\left(x_{2}\right)} + 17 i \operatorname{im}{\left(x_{2}\right)} - 16$$
-16 + 17*re(x2) + 17*i*im(x2)