x2=10*x+5*x2-1 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x2 = 10*x+5*x2-1
Looking for similar summands in the right part:
x2 = -1 + 5*x2 + 10*x
Move the summands with the unknown x
from the right part to the left part:
$$- 4 x_{2} = 10 x - 1$$
Divide both parts of the equation by -4*x2/x
x = -1 + 10*x / (-4*x2/x)
We get the answer: x = 1/10 - 2*x2/5
1 2*re(x2) 2*I*im(x2)
x1 = -- - -------- - ----------
10 5 5
$$x_{1} = - \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
x1 = -2*re(x2)/5 - 2*i*im(x2)/5 + 1/10
Sum and product of roots
[src]
1 2*re(x2) 2*I*im(x2)
-- - -------- - ----------
10 5 5
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
1 2*re(x2) 2*I*im(x2)
-- - -------- - ----------
10 5 5
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
1 2*re(x2) 2*I*im(x2)
-- - -------- - ----------
10 5 5
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
1 2*re(x2) 2*I*im(x2)
-- - -------- - ----------
10 5 5
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
1/10 - 2*re(x2)/5 - 2*i*im(x2)/5