Mister Exam

Other calculators

x2=10*x+5*x2-1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
x2 = 10*x + 5*x2 - 1
$$x_{2} = \left(10 x + 5 x_{2}\right) - 1$$
Detail solution
Given the linear equation:
x2 = 10*x+5*x2-1

Looking for similar summands in the right part:
x2 = -1 + 5*x2 + 10*x

Move the summands with the unknown x
from the right part to the left part:
$$- 4 x_{2} = 10 x - 1$$
Divide both parts of the equation by -4*x2/x
x = -1 + 10*x / (-4*x2/x)

We get the answer: x = 1/10 - 2*x2/5
The graph
Rapid solution [src]
     1    2*re(x2)   2*I*im(x2)
x1 = -- - -------- - ----------
     10      5           5     
$$x_{1} = - \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
x1 = -2*re(x2)/5 - 2*i*im(x2)/5 + 1/10
Sum and product of roots [src]
sum
1    2*re(x2)   2*I*im(x2)
-- - -------- - ----------
10      5           5     
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
=
1    2*re(x2)   2*I*im(x2)
-- - -------- - ----------
10      5           5     
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
product
1    2*re(x2)   2*I*im(x2)
-- - -------- - ----------
10      5           5     
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
=
1    2*re(x2)   2*I*im(x2)
-- - -------- - ----------
10      5           5     
$$- \frac{2 \operatorname{re}{\left(x_{2}\right)}}{5} - \frac{2 i \operatorname{im}{\left(x_{2}\right)}}{5} + \frac{1}{10}$$
1/10 - 2*re(x2)/5 - 2*i*im(x2)/5