Mister Exam

Other calculators

(2z+4):5=(3z-1):2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*z + 4   3*z - 1
------- = -------
   5         2   
$$\frac{2 z + 4}{5} = \frac{3 z - 1}{2}$$
Detail solution
Given the linear equation:
(2*z+4)/5 = (3*z-1)/2

Expand brackets in the left part
2*z/5+4/5 = (3*z-1)/2

Expand brackets in the right part
2*z/5+4/5 = 3*z/2-1/2

Move free summands (without z)
from left part to right part, we given:
$$\frac{2 z}{5} = \frac{3 z}{2} - \frac{13}{10}$$
Move the summands with the unknown z
from the right part to the left part:
$$\frac{\left(-11\right) z}{10} = - \frac{13}{10}$$
Divide both parts of the equation by -11/10
z = -13/10 / (-11/10)

We get the answer: z = 13/11
The graph
Sum and product of roots [src]
sum
13
--
11
$$\frac{13}{11}$$
=
13
--
11
$$\frac{13}{11}$$
product
13
--
11
$$\frac{13}{11}$$
=
13
--
11
$$\frac{13}{11}$$
13/11
Rapid solution [src]
     13
z1 = --
     11
$$z_{1} = \frac{13}{11}$$
z1 = 13/11
Numerical answer [src]
z1 = 1.18181818181818
z1 = 1.18181818181818