Mister Exam

Other calculators


2x^2+x-21=0

2x^2+x-21=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2             
2*x  + x - 21 = 0
$$2 x^{2} + x - 21 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = 1$$
$$c = -21$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (2) * (-21) = 169

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 3$$
Simplify
$$x_{2} = - \frac{7}{2}$$
Simplify
Vieta's Theorem
rewrite the equation
$$2 x^{2} + x - 21 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{x}{2} - \frac{21}{2} = 0$$
$$p x + x^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{1}{2}$$
$$q = \frac{c}{a}$$
$$q = - \frac{21}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{1}{2}$$
$$x_{1} x_{2} = - \frac{21}{2}$$
The graph
Rapid solution [src]
x1 = -7/2
$$x_{1} = - \frac{7}{2}$$
x2 = 3
$$x_{2} = 3$$
Sum and product of roots [src]
sum
0 - 7/2 + 3
$$\left(- \frac{7}{2} + 0\right) + 3$$
=
-1/2
$$- \frac{1}{2}$$
product
1*-7/2*3
$$1 \left(- \frac{7}{2}\right) 3$$
=
-21/2
$$- \frac{21}{2}$$
-21/2
Numerical answer [src]
x1 = -3.5
x2 = 3.0
x2 = 3.0
The graph
2x^2+x-21=0 equation