Mister Exam

Other calculators


2x^2-3x+5=0

2x^2-3x+5=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
2*x  - 3*x + 5 = 0
$$\left(2 x^{2} - 3 x\right) + 5 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -3$$
$$c = 5$$
, then
D = b^2 - 4 * a * c = 

(-3)^2 - 4 * (2) * (5) = -31

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{3}{4} + \frac{\sqrt{31} i}{4}$$
$$x_{2} = \frac{3}{4} - \frac{\sqrt{31} i}{4}$$
Vieta's Theorem
rewrite the equation
$$\left(2 x^{2} - 3 x\right) + 5 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{3 x}{2} + \frac{5}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{3}{2}$$
$$q = \frac{c}{a}$$
$$q = \frac{5}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{3}{2}$$
$$x_{1} x_{2} = \frac{5}{2}$$
The graph
Rapid solution [src]
             ____
     3   I*\/ 31 
x1 = - - --------
     4      4    
$$x_{1} = \frac{3}{4} - \frac{\sqrt{31} i}{4}$$
             ____
     3   I*\/ 31 
x2 = - + --------
     4      4    
$$x_{2} = \frac{3}{4} + \frac{\sqrt{31} i}{4}$$
x2 = 3/4 + sqrt(31)*i/4
Sum and product of roots [src]
sum
        ____           ____
3   I*\/ 31    3   I*\/ 31 
- - -------- + - + --------
4      4       4      4    
$$\left(\frac{3}{4} - \frac{\sqrt{31} i}{4}\right) + \left(\frac{3}{4} + \frac{\sqrt{31} i}{4}\right)$$
=
3/2
$$\frac{3}{2}$$
product
/        ____\ /        ____\
|3   I*\/ 31 | |3   I*\/ 31 |
|- - --------|*|- + --------|
\4      4    / \4      4    /
$$\left(\frac{3}{4} - \frac{\sqrt{31} i}{4}\right) \left(\frac{3}{4} + \frac{\sqrt{31} i}{4}\right)$$
=
5/2
$$\frac{5}{2}$$
5/2
Numerical answer [src]
x1 = 0.75 + 1.39194109070751*i
x2 = 0.75 - 1.39194109070751*i
x2 = 0.75 - 1.39194109070751*i
The graph
2x^2-3x+5=0 equation