Mister Exam

Other calculators

2x-1/x+6=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
      1        
2*x - - + 6 = 2
      x        
$$\left(2 x - \frac{1}{x}\right) + 6 = 2$$
Detail solution
Given the equation:
$$\left(2 x - \frac{1}{x}\right) + 6 = 2$$
Multiply the equation sides by the denominators:
and x
we get:
$$x \left(\left(2 x - \frac{1}{x}\right) + 6\right) = 2 x$$
$$2 x^{2} + 6 x - 1 = 2 x$$
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$2 x^{2} + 6 x - 1 = 2 x$$
to
$$2 x^{2} + 4 x - 1 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = 4$$
$$c = -1$$
, then
D = b^2 - 4 * a * c = 

(4)^2 - 4 * (2) * (-1) = 24

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = -1 + \frac{\sqrt{6}}{2}$$
$$x_{2} = - \frac{\sqrt{6}}{2} - 1$$
The graph
Rapid solution [src]
            ___
          \/ 6 
x1 = -1 + -----
            2  
$$x_{1} = -1 + \frac{\sqrt{6}}{2}$$
            ___
          \/ 6 
x2 = -1 - -----
            2  
$$x_{2} = - \frac{\sqrt{6}}{2} - 1$$
x2 = -sqrt(6)/2 - 1
Sum and product of roots [src]
sum
       ___          ___
     \/ 6         \/ 6 
-1 + ----- + -1 - -----
       2            2  
$$\left(- \frac{\sqrt{6}}{2} - 1\right) + \left(-1 + \frac{\sqrt{6}}{2}\right)$$
=
-2
$$-2$$
product
/       ___\ /       ___\
|     \/ 6 | |     \/ 6 |
|-1 + -----|*|-1 - -----|
\       2  / \       2  /
$$\left(-1 + \frac{\sqrt{6}}{2}\right) \left(- \frac{\sqrt{6}}{2} - 1\right)$$
=
-1/2
$$- \frac{1}{2}$$
-1/2
Numerical answer [src]
x1 = 0.224744871391589
x2 = -2.22474487139159
x2 = -2.22474487139159