2sinx/2=√2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\frac{2 \sin{\left(x \right)}}{2} = \sqrt{2}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
/ / ___\\ / / ___\\
x1 = pi - re\asin\\/ 2 // - I*im\asin\\/ 2 //
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}$$
/ / ___\\ / / ___\\
x2 = I*im\asin\\/ 2 // + re\asin\\/ 2 //
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}$$
x2 = re(asin(sqrt(2))) + i*im(asin(sqrt(2)))
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
pi - re\asin\\/ 2 // - I*im\asin\\/ 2 // + I*im\asin\\/ 2 // + re\asin\\/ 2 //
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)$$
$$\pi$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
\pi - re\asin\\/ 2 // - I*im\asin\\/ 2 ///*\I*im\asin\\/ 2 // + re\asin\\/ 2 ///
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-\I*im\asin\\/ 2 // + re\asin\\/ 2 ///*\-pi + I*im\asin\\/ 2 // + re\asin\\/ 2 ///
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)$$
-(i*im(asin(sqrt(2))) + re(asin(sqrt(2))))*(-pi + i*im(asin(sqrt(2))) + re(asin(sqrt(2))))
x1 = 1.5707963267949 + 0.881373587019543*i
x2 = 1.5707963267949 - 0.881373587019543*i
x2 = 1.5707963267949 - 0.881373587019543*i