Mister Exam

Other calculators

2sinx/2=√2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*sin(x)     ___
-------- = \/ 2 
   2            
$$\frac{2 \sin{\left(x \right)}}{2} = \sqrt{2}$$
Detail solution
Given the equation
$$\frac{2 \sin{\left(x \right)}}{2} = \sqrt{2}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
            /    /  ___\\       /    /  ___\\
x1 = pi - re\asin\\/ 2 // - I*im\asin\\/ 2 //
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}$$
         /    /  ___\\     /    /  ___\\
x2 = I*im\asin\\/ 2 // + re\asin\\/ 2 //
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}$$
x2 = re(asin(sqrt(2))) + i*im(asin(sqrt(2)))
Sum and product of roots [src]
sum
       /    /  ___\\       /    /  ___\\       /    /  ___\\     /    /  ___\\
pi - re\asin\\/ 2 // - I*im\asin\\/ 2 // + I*im\asin\\/ 2 // + re\asin\\/ 2 //
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)$$
=
pi
$$\pi$$
product
/       /    /  ___\\       /    /  ___\\\ /    /    /  ___\\     /    /  ___\\\
\pi - re\asin\\/ 2 // - I*im\asin\\/ 2 ///*\I*im\asin\\/ 2 // + re\asin\\/ 2 ///
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)$$
=
 /    /    /  ___\\     /    /  ___\\\ /          /    /  ___\\     /    /  ___\\\
-\I*im\asin\\/ 2 // + re\asin\\/ 2 ///*\-pi + I*im\asin\\/ 2 // + re\asin\\/ 2 ///
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)$$
-(i*im(asin(sqrt(2))) + re(asin(sqrt(2))))*(-pi + i*im(asin(sqrt(2))) + re(asin(sqrt(2))))
Numerical answer [src]
x1 = 1.5707963267949 + 0.881373587019543*i
x2 = 1.5707963267949 - 0.881373587019543*i
x2 = 1.5707963267949 - 0.881373587019543*i