Mister Exam

Other calculators


2*x^2-x+1=0

2*x^2-x+1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2            
2*x  - x + 1 = 0
$$\left(2 x^{2} - x\right) + 1 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -1$$
$$c = 1$$
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (2) * (1) = -7

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{1}{4} + \frac{\sqrt{7} i}{4}$$
$$x_{2} = \frac{1}{4} - \frac{\sqrt{7} i}{4}$$
Vieta's Theorem
rewrite the equation
$$\left(2 x^{2} - x\right) + 1 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{x}{2} + \frac{1}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{1}{2}$$
$$q = \frac{c}{a}$$
$$q = \frac{1}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{1}{2}$$
$$x_{1} x_{2} = \frac{1}{2}$$
The graph
Rapid solution [src]
             ___
     1   I*\/ 7 
x1 = - - -------
     4      4   
$$x_{1} = \frac{1}{4} - \frac{\sqrt{7} i}{4}$$
             ___
     1   I*\/ 7 
x2 = - + -------
     4      4   
$$x_{2} = \frac{1}{4} + \frac{\sqrt{7} i}{4}$$
x2 = 1/4 + sqrt(7)*i/4
Sum and product of roots [src]
sum
        ___           ___
1   I*\/ 7    1   I*\/ 7 
- - ------- + - + -------
4      4      4      4   
$$\left(\frac{1}{4} - \frac{\sqrt{7} i}{4}\right) + \left(\frac{1}{4} + \frac{\sqrt{7} i}{4}\right)$$
=
1/2
$$\frac{1}{2}$$
product
/        ___\ /        ___\
|1   I*\/ 7 | |1   I*\/ 7 |
|- - -------|*|- + -------|
\4      4   / \4      4   /
$$\left(\frac{1}{4} - \frac{\sqrt{7} i}{4}\right) \left(\frac{1}{4} + \frac{\sqrt{7} i}{4}\right)$$
=
1/2
$$\frac{1}{2}$$
1/2
Numerical answer [src]
x1 = 0.25 + 0.661437827766148*i
x2 = 0.25 - 0.661437827766148*i
x2 = 0.25 - 0.661437827766148*i
The graph
2*x^2-x+1=0 equation