Mister Exam

Other calculators

2*x^2-7=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
2*x  - 7 = 0
$$2 x^{2} - 7 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = 0$$
$$c = -7$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (2) * (-7) = 56

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{\sqrt{14}}{2}$$
$$x_{2} = - \frac{\sqrt{14}}{2}$$
Vieta's Theorem
rewrite the equation
$$2 x^{2} - 7 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{7}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = - \frac{7}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = - \frac{7}{2}$$
The graph
Rapid solution [src]
        ____ 
     -\/ 14  
x1 = --------
        2    
$$x_{1} = - \frac{\sqrt{14}}{2}$$
       ____
     \/ 14 
x2 = ------
       2   
$$x_{2} = \frac{\sqrt{14}}{2}$$
x2 = sqrt(14)/2
Sum and product of roots [src]
sum
    ____     ____
  \/ 14    \/ 14 
- ------ + ------
    2        2   
$$- \frac{\sqrt{14}}{2} + \frac{\sqrt{14}}{2}$$
=
0
$$0$$
product
   ____    ____
-\/ 14   \/ 14 
--------*------
   2       2   
$$- \frac{\sqrt{14}}{2} \frac{\sqrt{14}}{2}$$
=
-7/2
$$- \frac{7}{2}$$
-7/2
Numerical answer [src]
x1 = -1.87082869338697
x2 = 1.87082869338697
x2 = 1.87082869338697