Mister Exam

Other calculators

2*cos(x+pi/3)=5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     /    pi\    
2*cos|x + --| = 5
     \    3 /    
2cos(x+π3)=52 \cos{\left(x + \frac{\pi}{3} \right)} = 5
Detail solution
Given the equation
2cos(x+π3)=52 \cos{\left(x + \frac{\pi}{3} \right)} = 5
- this is the simplest trigonometric equation
Divide both parts of the equation by 2

The equation is transformed to
cos(x+π3)=52\cos{\left(x + \frac{\pi}{3} \right)} = \frac{5}{2}
As right part of the equation
modulo =
True

but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
0-80-60-40-2020406080-100100-1010
Rapid solution [src]
       pi                                  
x1 = - -- + I*im(acos(5/2)) + re(acos(5/2))
       3                                   
x1=π3+re(acos(52))+iim(acos(52))x_{1} = - \frac{\pi}{3} + \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}
     5*pi                  
x2 = ---- - I*im(acos(5/2))
      3                    
x2=5π3iim(acos(52))x_{2} = \frac{5 \pi}{3} - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}
x2 = 5*pi/3 - i*im(acos(5/2))
Sum and product of roots [src]
sum
  pi                                     5*pi                  
- -- + I*im(acos(5/2)) + re(acos(5/2)) + ---- - I*im(acos(5/2))
  3                                       3                    
(5π3iim(acos(52)))+(π3+re(acos(52))+iim(acos(52)))\left(\frac{5 \pi}{3} - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) + \left(- \frac{\pi}{3} + \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)
=
4*pi                
---- + re(acos(5/2))
 3                  
re(acos(52))+4π3\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + \frac{4 \pi}{3}
product
/  pi                                  \ /5*pi                  \
|- -- + I*im(acos(5/2)) + re(acos(5/2))|*|---- - I*im(acos(5/2))|
\  3                                   / \ 3                    /
(5π3iim(acos(52)))(π3+re(acos(52))+iim(acos(52)))\left(\frac{5 \pi}{3} - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) \left(- \frac{\pi}{3} + \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)
=
(5*pi - 3*I*im(acos(5/2)))*(-pi + 3*re(acos(5/2)) + 3*I*im(acos(5/2)))
----------------------------------------------------------------------
                                  9                                   
(5π3iim(acos(52)))(π+3re(acos(52))+3iim(acos(52)))9\frac{\left(5 \pi - 3 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) \left(- \pi + 3 \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + 3 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)}{9}
(5*pi - 3*i*im(acos(5/2)))*(-pi + 3*re(acos(5/2)) + 3*i*im(acos(5/2)))/9
Numerical answer [src]
x1 = -1.0471975511966 + 1.56679923697241*i
x2 = 5.23598775598299 - 1.56679923697241*i
x2 = 5.23598775598299 - 1.56679923697241*i