Mister Exam

Other calculators

2160000*x/(1+2.5*x)=2030477.32 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2160000*x   50761933
--------- = --------
     5*x       25   
 1 + ---            
      2             
$$\frac{2160000 x}{\frac{5 x}{2} + 1} = \frac{50761933}{25}$$
Detail solution
Given the equation:
$$\frac{2160000 x}{\frac{5 x}{2} + 1} = \frac{50761933}{25}$$
Multiply the equation sides by the denominator 1 + 5*x/2
we get:
$$\frac{4320000 x \left(\frac{5 x}{2} + 1\right)}{5 x + 2} = \frac{50761933 x}{10} + \frac{50761933}{25}$$
Expand brackets in the left part
4320000*x1+5*x/22+5*x = 50761933/25 + 50761933*x/10

Looking for similar summands in the left part:
4320000*x*(1 + 5*x/2)/(2 + 5*x) = 50761933/25 + 50761933*x/10

Move the summands with the unknown x
from the right part to the left part:
$$\frac{4320000 x \left(\frac{5 x}{2} + 1\right)}{5 x + 2} - \frac{50761933 x}{10} = \frac{50761933}{25}$$
Divide both parts of the equation by (-50761933*x/10 + 4320000*x*(1 + 5*x/2)/(2 + 5*x))/x
x = 50761933/25 / ((-50761933*x/10 + 4320000*x*(1 + 5*x/2)/(2 + 5*x))/x)

We get the answer: x = -101523866/145809665
The graph
Sum and product of roots [src]
sum
-101523866 
-----------
 145809665 
$$- \frac{101523866}{145809665}$$
=
-101523866 
-----------
 145809665 
$$- \frac{101523866}{145809665}$$
product
-101523866 
-----------
 145809665 
$$- \frac{101523866}{145809665}$$
=
-101523866 
-----------
 145809665 
$$- \frac{101523866}{145809665}$$
-101523866/145809665
Rapid solution [src]
     -101523866 
x1 = -----------
      145809665 
$$x_{1} = - \frac{101523866}{145809665}$$
x1 = -101523866/145809665
Numerical answer [src]
x1 = -0.696276656283382
x1 = -0.696276656283382