Detail solution
Given the equation:
((5/2)*x-15)*y-x = 4
Expand expressions:
- 15*y + 5*x*y/2 - x = 4
Reducing, you get:
-4 - x - 15*y + 5*x*y/2 = 0
Move free summands (without x)
from left part to right part, we given:
$$\frac{5 x y}{2} - x - 15 y = 4$$
Move the summands with the other variables
from left part to right part, we given:
$$\frac{5 x y}{2} - x = 15 y + 4$$
Divide both parts of the equation by (-x + 5*x*y/2)/x
x = 4 + 15*y / ((-x + 5*x*y/2)/x)
We get the answer: x = 2*(4 + 15*y)/(-2 + 5*y)
Sum and product of roots
[src]
2
/ 10*(4 + 15*re(y))*im(y) 30*(-2 + 5*re(y))*im(y) \ 150*im (y) 2*(-2 + 5*re(y))*(4 + 15*re(y))
I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
| 2 2 2 2 | 2 2 2 2
\ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)/ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)
$$i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2
/ 10*(4 + 15*re(y))*im(y) 30*(-2 + 5*re(y))*im(y) \ 150*im (y) 2*(-2 + 5*re(y))*(4 + 15*re(y))
I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
| 2 2 2 2 | 2 2 2 2
\ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)/ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)
$$i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2
/ 10*(4 + 15*re(y))*im(y) 30*(-2 + 5*re(y))*im(y) \ 150*im (y) 2*(-2 + 5*re(y))*(4 + 15*re(y))
I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
| 2 2 2 2 | 2 2 2 2
\ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)/ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)
$$i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
/ 2 \
2*\75*im (y) + (-2 + 5*re(y))*(4 + 15*re(y)) - 50*I*im(y)/
----------------------------------------------------------
2 2
(-2 + 5*re(y)) + 25*im (y)
$$\frac{2 \left(\left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right) + 75 \left(\operatorname{im}{\left(y\right)}\right)^{2} - 50 i \operatorname{im}{\left(y\right)}\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2*(75*im(y)^2 + (-2 + 5*re(y))*(4 + 15*re(y)) - 50*i*im(y))/((-2 + 5*re(y))^2 + 25*im(y)^2)
2
/ 10*(4 + 15*re(y))*im(y) 30*(-2 + 5*re(y))*im(y) \ 150*im (y) 2*(-2 + 5*re(y))*(4 + 15*re(y))
x1 = I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
| 2 2 2 2 | 2 2 2 2
\ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)/ (-2 + 5*re(y)) + 25*im (y) (-2 + 5*re(y)) + 25*im (y)
$$x_{1} = i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
x1 = i*(30*(5*re(y) - 2)*im(y)/((5*re(y) - 2)^2 + 25*im(y)^2) - 10*(15*re(y) + 4)*im(y)/((5*re(y) - 2)^2 + 25*im(y)^2)) + 2*(5*re(y) - 2)*(15*re(y) + 4)/((5*re(y) - 2)^2 + 25*im(y)^2) + 150*im(y)^2/((5*re(y) - 2)^2 + 25*im(y)^2)