Mister Exam

Other calculators

(2,5*x-15)*y-x=4 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
/5*x     \          
|--- - 15|*y - x = 4
\ 2      /          
$$- x + y \left(\frac{5 x}{2} - 15\right) = 4$$
Detail solution
Given the equation:
((5/2)*x-15)*y-x = 4

Expand expressions:
- 15*y + 5*x*y/2 - x = 4

Reducing, you get:
-4 - x - 15*y + 5*x*y/2 = 0

Move free summands (without x)
from left part to right part, we given:
$$\frac{5 x y}{2} - x - 15 y = 4$$
Move the summands with the other variables
from left part to right part, we given:
$$\frac{5 x y}{2} - x = 15 y + 4$$
Divide both parts of the equation by (-x + 5*x*y/2)/x
x = 4 + 15*y / ((-x + 5*x*y/2)/x)

We get the answer: x = 2*(4 + 15*y)/(-2 + 5*y)
The graph
Sum and product of roots [src]
sum
                                                                                 2                                             
  /    10*(4 + 15*re(y))*im(y)       30*(-2 + 5*re(y))*im(y)  \            150*im (y)           2*(-2 + 5*re(y))*(4 + 15*re(y))
I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
  |                2        2                    2        2   |                 2        2                      2        2     
  \  (-2 + 5*re(y))  + 25*im (y)   (-2 + 5*re(y))  + 25*im (y)/   (-2 + 5*re(y))  + 25*im (y)     (-2 + 5*re(y))  + 25*im (y)  
$$i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
=
                                                                                 2                                             
  /    10*(4 + 15*re(y))*im(y)       30*(-2 + 5*re(y))*im(y)  \            150*im (y)           2*(-2 + 5*re(y))*(4 + 15*re(y))
I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
  |                2        2                    2        2   |                 2        2                      2        2     
  \  (-2 + 5*re(y))  + 25*im (y)   (-2 + 5*re(y))  + 25*im (y)/   (-2 + 5*re(y))  + 25*im (y)     (-2 + 5*re(y))  + 25*im (y)  
$$i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
product
                                                                                 2                                             
  /    10*(4 + 15*re(y))*im(y)       30*(-2 + 5*re(y))*im(y)  \            150*im (y)           2*(-2 + 5*re(y))*(4 + 15*re(y))
I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
  |                2        2                    2        2   |                 2        2                      2        2     
  \  (-2 + 5*re(y))  + 25*im (y)   (-2 + 5*re(y))  + 25*im (y)/   (-2 + 5*re(y))  + 25*im (y)     (-2 + 5*re(y))  + 25*im (y)  
$$i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
=
  /     2                                                \
2*\75*im (y) + (-2 + 5*re(y))*(4 + 15*re(y)) - 50*I*im(y)/
----------------------------------------------------------
                             2        2                   
               (-2 + 5*re(y))  + 25*im (y)                
$$\frac{2 \left(\left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right) + 75 \left(\operatorname{im}{\left(y\right)}\right)^{2} - 50 i \operatorname{im}{\left(y\right)}\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2*(75*im(y)^2 + (-2 + 5*re(y))*(4 + 15*re(y)) - 50*i*im(y))/((-2 + 5*re(y))^2 + 25*im(y)^2)
Rapid solution [src]
                                                                                      2                                             
       /    10*(4 + 15*re(y))*im(y)       30*(-2 + 5*re(y))*im(y)  \            150*im (y)           2*(-2 + 5*re(y))*(4 + 15*re(y))
x1 = I*|- --------------------------- + ---------------------------| + --------------------------- + -------------------------------
       |                2        2                    2        2   |                 2        2                      2        2     
       \  (-2 + 5*re(y))  + 25*im (y)   (-2 + 5*re(y))  + 25*im (y)/   (-2 + 5*re(y))  + 25*im (y)     (-2 + 5*re(y))  + 25*im (y)  
$$x_{1} = i \left(\frac{30 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{10 \left(15 \operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{2 \left(5 \operatorname{re}{\left(y\right)} - 2\right) \left(15 \operatorname{re}{\left(y\right)} + 4\right)}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{150 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(5 \operatorname{re}{\left(y\right)} - 2\right)^{2} + 25 \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
x1 = i*(30*(5*re(y) - 2)*im(y)/((5*re(y) - 2)^2 + 25*im(y)^2) - 10*(15*re(y) + 4)*im(y)/((5*re(y) - 2)^2 + 25*im(y)^2)) + 2*(5*re(y) - 2)*(15*re(y) + 4)/((5*re(y) - 2)^2 + 25*im(y)^2) + 150*im(y)^2/((5*re(y) - 2)^2 + 25*im(y)^2)