Mister Exam

Other calculators

  • How to use it?

  • Equation:
  • Equation (x-4)^4-4*(x-4)^2-21=0
  • Equation x-y=5
  • Equation 6x-3x+1=8 Equation 6x-3x+1=8
  • Equation x^4-35*x^2-36=0
  • Express {x} in terms of y where:
  • -6*x+12*y=11
  • -2*x+20*y=-2
  • -13*x-7*y=16
  • 5*x+19*y=-3
  • Expression:
  • 480
  • Identical expressions

  • twenty-four /sqrt(one +(x/(fifty thousand / twenty-four))^ two)* twenty-four /sqrt(one +(x/(fifty thousand / twenty-four))^ two)= four hundred and eighty
  • 24 divide by square root of (1 plus (x divide by (50000 divide by 24)) squared ) multiply by 24 divide by square root of (1 plus (x divide by (50000 divide by 24)) squared ) equally 480
  • twenty minus four divide by square root of (one plus (x divide by (fifty thousand divide by twenty minus four)) to the power of two) multiply by twenty minus four divide by square root of (one plus (x divide by (fifty thousand divide by twenty minus four)) to the power of two) equally four hundred and eighty
  • 24/√(1+(x/(50000/24))^2)*24/√(1+(x/(50000/24))^2)=480
  • 24/sqrt(1+(x/(50000/24))2)*24/sqrt(1+(x/(50000/24))2)=480
  • 24/sqrt1+x/50000/242*24/sqrt1+x/50000/242=480
  • 24/sqrt(1+(x/(50000/24))²)*24/sqrt(1+(x/(50000/24))²)=480
  • 24/sqrt(1+(x/(50000/24)) to the power of 2)*24/sqrt(1+(x/(50000/24)) to the power of 2)=480
  • 24/sqrt(1+(x/(50000/24))^2)24/sqrt(1+(x/(50000/24))^2)=480
  • 24/sqrt(1+(x/(50000/24))2)24/sqrt(1+(x/(50000/24))2)=480
  • 24/sqrt1+x/50000/24224/sqrt1+x/50000/242=480
  • 24/sqrt1+x/50000/24^224/sqrt1+x/50000/24^2=480
  • 24 divide by sqrt(1+(x divide by (50000 divide by 24))^2)*24 divide by sqrt(1+(x divide by (50000 divide by 24))^2)=480
  • Similar expressions

  • 24/sqrt(1-(x/(50000/24))^2)*24/sqrt(1+(x/(50000/24))^2)=480
  • 24/sqrt(1+(x/(50000/24))^2)*24/sqrt(1-(x/(50000/24))^2)=480

24/sqrt(1+(x/(50000/24))^2)*24/sqrt(1+(x/(50000/24))^2)=480 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
         24                  
--------------------*24      
     _______________         
    /             2          
   /      /  x   \           
  /   1 + |------|           
\/        \6250/3/           
----------------------- = 480
       _______________       
      /             2        
     /      /  x   \         
    /   1 + |------|         
  \/        \6250/3/         
$$\frac{24 \frac{24}{\sqrt{\left(\frac{x}{\frac{6250}{3}}\right)^{2} + 1}}}{\sqrt{\left(\frac{x}{\frac{6250}{3}}\right)^{2} + 1}} = 480$$
Detail solution
Given the equation:
$$\frac{24 \frac{24}{\sqrt{\left(\frac{x}{\frac{6250}{3}}\right)^{2} + 1}}}{\sqrt{\left(\frac{x}{\frac{6250}{3}}\right)^{2} + 1}} = 480$$
Multiply the equation sides by the denominators:
1 + 9*x^2/39062500
we get:
$$\frac{576 \left(\frac{9 x^{2}}{39062500} + 1\right)}{\left(\frac{x}{\frac{6250}{3}}\right)^{2} + 1} = \frac{216 x^{2}}{1953125} + 480$$
$$576 = \frac{216 x^{2}}{1953125} + 480$$
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$576 = \frac{216 x^{2}}{1953125} + 480$$
to
$$96 - \frac{216 x^{2}}{1953125} = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = - \frac{216}{1953125}$$
$$b = 0$$
$$c = 96$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (-216/1953125) * (96) = 82944/1953125

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{1250 \sqrt{5}}{3}$$
$$x_{2} = \frac{1250 \sqrt{5}}{3}$$
The graph
Sum and product of roots [src]
sum
         ___          ___
  1250*\/ 5    1250*\/ 5 
- ---------- + ----------
      3            3     
$$- \frac{1250 \sqrt{5}}{3} + \frac{1250 \sqrt{5}}{3}$$
=
0
$$0$$
product
        ___        ___
-1250*\/ 5  1250*\/ 5 
-----------*----------
     3          3     
$$- \frac{1250 \sqrt{5}}{3} \frac{1250 \sqrt{5}}{3}$$
=
-7812500/9
$$- \frac{7812500}{9}$$
-7812500/9
Rapid solution [src]
             ___
     -1250*\/ 5 
x1 = -----------
          3     
$$x_{1} = - \frac{1250 \sqrt{5}}{3}$$
            ___
     1250*\/ 5 
x2 = ----------
         3     
$$x_{2} = \frac{1250 \sqrt{5}}{3}$$
x2 = 1250*sqrt(5)/3
Numerical answer [src]
x1 = -931.694990624912
x2 = 931.694990624912
x2 = 931.694990624912