Mister Exam

Other calculators

25^x-(a+1)*5^x+3a-6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  x            x              
25  - (a + 1)*5  + 3*a - 6 = 0
$$\left(3 a + \left(25^{x} - 5^{x} \left(a + 1\right)\right)\right) - 6 = 0$$
Detail solution
Given the equation:
$$\left(3 a + \left(25^{x} - 5^{x} \left(a + 1\right)\right)\right) - 6 = 0$$
or
$$\left(3 a + \left(25^{x} - 5^{x} \left(a + 1\right)\right)\right) - 6 = 0$$
Do replacement
$$v = 5^{x}$$
we get
$$3 a + v^{2} + v \left(- a - 1\right) - 6 = 0$$
or
$$3 a + v^{2} + v \left(- a - 1\right) - 6 = 0$$
Expand the expression in the equation
$$3 a + v^{2} + v \left(- a - 1\right) - 6 = 0$$
We get the quadratic equation
$$- a v + 3 a + v^{2} - v - 6 = 0$$
This equation is of the form
a*v^2 + b*v + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$v_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$v_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = - a - 1$$
$$c = 3 a - 6$$
, then
D = b^2 - 4 * a * c = 

(-1 - a)^2 - 4 * (1) * (-6 + 3*a) = 24 + (-1 - a)^2 - 12*a

The equation has two roots.
v1 = (-b + sqrt(D)) / (2*a)

v2 = (-b - sqrt(D)) / (2*a)

or
$$v_{1} = \frac{a}{2} + \frac{\sqrt{- 12 a + \left(- a - 1\right)^{2} + 24}}{2} + \frac{1}{2}$$
$$v_{2} = \frac{a}{2} - \frac{\sqrt{- 12 a + \left(- a - 1\right)^{2} + 24}}{2} + \frac{1}{2}$$
do backward replacement
$$5^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(5 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(\frac{a}{2} + \frac{\sqrt{- 12 a + \left(- a - 1\right)^{2} + 24}}{2} + \frac{1}{2} \right)}}{\log{\left(5 \right)}} = \frac{\log{\left(\frac{a}{2} + \frac{\sqrt{a^{2} - 10 a + 25}}{2} + \frac{1}{2} \right)}}{\log{\left(5 \right)}}$$
$$x_{2} = \frac{\log{\left(\frac{a}{2} - \frac{\sqrt{- 12 a + \left(- a - 1\right)^{2} + 24}}{2} + \frac{1}{2} \right)}}{\log{\left(5 \right)}} = \frac{\log{\left(\frac{a}{2} - \frac{\sqrt{a^{2} - 10 a + 25}}{2} + \frac{1}{2} \right)}}{\log{\left(5 \right)}}$$
The graph
Rapid solution [src]
     log(3)
x1 = ------
     log(5)
$$x_{1} = \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
     log(|-2 + a|)   I*arg(-2 + a)
x2 = ------------- + -------------
         log(5)          log(5)   
$$x_{2} = \frac{\log{\left(\left|{a - 2}\right| \right)}}{\log{\left(5 \right)}} + \frac{i \arg{\left(a - 2 \right)}}{\log{\left(5 \right)}}$$
x2 = log(|a - 2|)/log(5) + i*arg(a - 2)/log(5)
Sum and product of roots [src]
sum
log(3)   log(|-2 + a|)   I*arg(-2 + a)
------ + ------------- + -------------
log(5)       log(5)          log(5)   
$$\left(\frac{\log{\left(\left|{a - 2}\right| \right)}}{\log{\left(5 \right)}} + \frac{i \arg{\left(a - 2 \right)}}{\log{\left(5 \right)}}\right) + \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
=
log(3)   log(|-2 + a|)   I*arg(-2 + a)
------ + ------------- + -------------
log(5)       log(5)          log(5)   
$$\frac{\log{\left(\left|{a - 2}\right| \right)}}{\log{\left(5 \right)}} + \frac{i \arg{\left(a - 2 \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
product
log(3) /log(|-2 + a|)   I*arg(-2 + a)\
------*|------------- + -------------|
log(5) \    log(5)          log(5)   /
$$\frac{\log{\left(3 \right)}}{\log{\left(5 \right)}} \left(\frac{\log{\left(\left|{a - 2}\right| \right)}}{\log{\left(5 \right)}} + \frac{i \arg{\left(a - 2 \right)}}{\log{\left(5 \right)}}\right)$$
=
(I*arg(-2 + a) + log(|-2 + a|))*log(3)
--------------------------------------
                  2                   
               log (5)                
$$\frac{\left(\log{\left(\left|{a - 2}\right| \right)} + i \arg{\left(a - 2 \right)}\right) \log{\left(3 \right)}}{\log{\left(5 \right)}^{2}}$$
(i*arg(-2 + a) + log(|-2 + a|))*log(3)/log(5)^2