Mister Exam

Other calculators

(3^x)+x-4=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x            
3  + x - 4 = 0
(3x+x)4=0\left(3^{x} + x\right) - 4 = 0
The graph
-12.5-10.0-7.5-5.0-2.50.02.55.07.510.012.515.0-200000200000
Rapid solution [src]
x1 = 1
x1=1x_{1} = 1
     -W(log(443426488243037769948249630619149892803)) + log(81)
x2 = ----------------------------------------------------------
                               log(3)                          
x2=W(log(443426488243037769948249630619149892803))+log(81)log(3)x_{2} = \frac{- W\left(\log{\left(443426488243037769948249630619149892803 \right)}\right) + \log{\left(81 \right)}}{\log{\left(3 \right)}}
x2 = (-LambertW(log(443426488243037769948249630619149892803)) + log(81))/log(3)
Sum and product of roots [src]
sum
    -W(log(443426488243037769948249630619149892803)) + log(81)
1 + ----------------------------------------------------------
                              log(3)                          
1+W(log(443426488243037769948249630619149892803))+log(81)log(3)1 + \frac{- W\left(\log{\left(443426488243037769948249630619149892803 \right)}\right) + \log{\left(81 \right)}}{\log{\left(3 \right)}}
=
    -W(log(443426488243037769948249630619149892803)) + log(81)
1 + ----------------------------------------------------------
                              log(3)                          
1+W(log(443426488243037769948249630619149892803))+log(81)log(3)1 + \frac{- W\left(\log{\left(443426488243037769948249630619149892803 \right)}\right) + \log{\left(81 \right)}}{\log{\left(3 \right)}}
product
-W(log(443426488243037769948249630619149892803)) + log(81)
----------------------------------------------------------
                          log(3)                          
W(log(443426488243037769948249630619149892803))+log(81)log(3)\frac{- W\left(\log{\left(443426488243037769948249630619149892803 \right)}\right) + \log{\left(81 \right)}}{\log{\left(3 \right)}}
=
-W(log(443426488243037769948249630619149892803)) + log(81)
----------------------------------------------------------
                          log(3)                          
W(log(443426488243037769948249630619149892803))+log(81)log(3)\frac{- W\left(\log{\left(443426488243037769948249630619149892803 \right)}\right) + \log{\left(81 \right)}}{\log{\left(3 \right)}}
(-LambertW(log(443426488243037769948249630619149892803)) + log(81))/log(3)
Numerical answer [src]
x1 = 0.999999999999993
x2 = 1.0
x3 = 0.999999999999998
x4 = 0.999999999999976
x5 = 1.0
x6 = 0.999999999999929
x7 = 0.999999999999812
x8 = 1.0
x8 = 1.0