3^x-2*3^x-2=7 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$\left(- 2 \cdot 3^{x} + 3^{x}\right) - 2 = 7$$
or
$$\left(\left(- 2 \cdot 3^{x} + 3^{x}\right) - 2\right) - 7 = 0$$
or
$$- 3^{x} = 9$$
or
$$3^{x} = -9$$
- this is the simplest exponential equation
Do replacement
$$v = 3^{x}$$
we get
$$v + 9 = 0$$
or
$$v + 9 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = -9$$
We get the answer: v = -9
do backward replacement
$$3^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(-9 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(9 \right)} + i \pi}{\log{\left(3 \right)}}$$
Sum and product of roots
[src]
log(9) pi*I
------ + ------
log(3) log(3)
$$\frac{\log{\left(9 \right)}}{\log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}}$$
log(9) pi*I
------ + ------
log(3) log(3)
$$\frac{\log{\left(9 \right)}}{\log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}}$$
log(9) pi*I
------ + ------
log(3) log(3)
$$\frac{\log{\left(9 \right)}}{\log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}}$$
pi*I + log(9)
-------------
log(3)
$$\frac{\log{\left(9 \right)} + i \pi}{\log{\left(3 \right)}}$$
log(9) pi*I
x1 = ------ + ------
log(3) log(3)
$$x_{1} = \frac{\log{\left(9 \right)}}{\log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}}$$
x1 = log(9)/log(3) + i*pi/log(3)
x1 = 2.0 + 2.85960086738013*i
x1 = 2.0 + 2.85960086738013*i