Mister Exam

Other calculators


3^x-3=81

3^x-3=81 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x         
3  - 3 = 81
3x3=813^{x} - 3 = 81
Detail solution
Given the equation:
3x3=813^{x} - 3 = 81
or
(3x3)81=0\left(3^{x} - 3\right) - 81 = 0
or
3x=843^{x} = 84
or
3x=843^{x} = 84
- this is the simplest exponential equation
Do replacement
v=3xv = 3^{x}
we get
v84=0v - 84 = 0
or
v84=0v - 84 = 0
Move free summands (without v)
from left part to right part, we given:
v=84v = 84
We get the answer: v = 84
do backward replacement
3x=v3^{x} = v
or
x=log(v)log(3)x = \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}
The final answer
x1=log(84)log(3)=log(84)log(3)x_{1} = \frac{\log{\left(84 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(84 \right)}}{\log{\left(3 \right)}}
The graph
-7.5-5.0-2.50.02.55.07.510.012.515.017.520.0-500000010000000
Rapid solution [src]
     log(84)
x1 = -------
      log(3)
x1=log(84)log(3)x_{1} = \frac{\log{\left(84 \right)}}{\log{\left(3 \right)}}
x1 = log(84)/log(3)
Sum and product of roots [src]
sum
log(84)
-------
 log(3)
log(84)log(3)\frac{\log{\left(84 \right)}}{\log{\left(3 \right)}}
=
log(84)
-------
 log(3)
log(84)log(3)\frac{\log{\left(84 \right)}}{\log{\left(3 \right)}}
product
log(84)
-------
 log(3)
log(84)log(3)\frac{\log{\left(84 \right)}}{\log{\left(3 \right)}}
=
log(84)
-------
 log(3)
log(84)log(3)\frac{\log{\left(84 \right)}}{\log{\left(3 \right)}}
log(84)/log(3)
Numerical answer [src]
x1 = 4.03310325630434
x1 = 4.03310325630434
The graph
3^x-3=81 equation