Mister Exam

Other calculators

3^x-9*x+13=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x               
3  - 9*x + 13 = 0
$$\left(3^{x} - 9 x\right) + 13 = 0$$
The graph
Rapid solution [src]
         / /    /  4/9\\\                                      
         | |    | 3   |||                      / /    /  4/9\\\
         | |    | ----|||                      | |    | 3   |||
         | |    |  3  |||   log(1594323)       | |    | ----|||
     - re\W\-log\3    /// + ------------       | |    |  3  |||
                                 9         I*im\W\-log\3    ///
x1 = ----------------------------------- - --------------------
                    log(3)                        log(3)       
$$x_{1} = \frac{- \operatorname{re}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)} + \frac{\log{\left(1594323 \right)}}{9}}{\log{\left(3 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)}}{\log{\left(3 \right)}}$$
x1 = (-re(LambertW(-log(3^(3^(4/9)/3)))) + log(1594323)/9)/log(3) - i*im(LambertW(-log(3^(3^(4/9)/3))))/log(3)
Sum and product of roots [src]
sum
    / /    /  4/9\\\                                      
    | |    | 3   |||                      / /    /  4/9\\\
    | |    | ----|||                      | |    | 3   |||
    | |    |  3  |||   log(1594323)       | |    | ----|||
- re\W\-log\3    /// + ------------       | |    |  3  |||
                            9         I*im\W\-log\3    ///
----------------------------------- - --------------------
               log(3)                        log(3)       
$$\frac{- \operatorname{re}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)} + \frac{\log{\left(1594323 \right)}}{9}}{\log{\left(3 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)}}{\log{\left(3 \right)}}$$
=
    / /    /  4/9\\\                                      
    | |    | 3   |||                      / /    /  4/9\\\
    | |    | ----|||                      | |    | 3   |||
    | |    |  3  |||   log(1594323)       | |    | ----|||
- re\W\-log\3    /// + ------------       | |    |  3  |||
                            9         I*im\W\-log\3    ///
----------------------------------- - --------------------
               log(3)                        log(3)       
$$\frac{- \operatorname{re}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)} + \frac{\log{\left(1594323 \right)}}{9}}{\log{\left(3 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)}}{\log{\left(3 \right)}}$$
product
    / /    /  4/9\\\                                      
    | |    | 3   |||                      / /    /  4/9\\\
    | |    | ----|||                      | |    | 3   |||
    | |    |  3  |||   log(1594323)       | |    | ----|||
- re\W\-log\3    /// + ------------       | |    |  3  |||
                            9         I*im\W\-log\3    ///
----------------------------------- - --------------------
               log(3)                        log(3)       
$$\frac{- \operatorname{re}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)} + \frac{\log{\left(1594323 \right)}}{9}}{\log{\left(3 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)}}{\log{\left(3 \right)}}$$
=
    / /    /  4/9\\\                      / /    /  4/9\\\
    | |    | 3   |||                      | |    | 3   |||
    | |    | ----|||                      | |    | ----|||
    | |    |  3  |||   log(1594323)       | |    |  3  |||
- re\W\-log\3    /// + ------------ - I*im\W\-log\3    ///
                            9                             
----------------------------------------------------------
                          log(3)                          
$$\frac{- \operatorname{re}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)} + \frac{\log{\left(1594323 \right)}}{9} - i \operatorname{im}{\left(W\left(- \log{\left(3^{\frac{3^{\frac{4}{9}}}{3}} \right)}\right)\right)}}{\log{\left(3 \right)}}$$
(-re(LambertW(-log(3^(3^(4/9)/3)))) + log(1594323)/9 - i*im(LambertW(-log(3^(3^(4/9)/3)))))/log(3)
Numerical answer [src]
x1 = 2.05795766361335 - 0.871442180113678*i
x1 = 2.05795766361335 - 0.871442180113678*i