Mister Exam

Other calculators


3^x=30

3^x=30 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x     
3  = 30
$$3^{x} = 30$$
Detail solution
Given the equation:
$$3^{x} = 30$$
or
$$3^{x} - 30 = 0$$
or
$$3^{x} = 30$$
or
$$3^{x} = 30$$
- this is the simplest exponential equation
Do replacement
$$v = 3^{x}$$
we get
$$v - 30 = 0$$
or
$$v - 30 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 30$$
We get the answer: v = 30
do backward replacement
$$3^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(30 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(30 \right)}}{\log{\left(3 \right)}}$$
The graph
Sum and product of roots [src]
sum
log(30)
-------
 log(3)
$$\frac{\log{\left(30 \right)}}{\log{\left(3 \right)}}$$
=
log(30)
-------
 log(3)
$$\frac{\log{\left(30 \right)}}{\log{\left(3 \right)}}$$
product
log(30)
-------
 log(3)
$$\frac{\log{\left(30 \right)}}{\log{\left(3 \right)}}$$
=
log(30)
-------
 log(3)
$$\frac{\log{\left(30 \right)}}{\log{\left(3 \right)}}$$
log(30)/log(3)
Rapid solution [src]
     log(30)
x1 = -------
      log(3)
$$x_{1} = \frac{\log{\left(30 \right)}}{\log{\left(3 \right)}}$$
x1 = log(30)/log(3)
Numerical answer [src]
x1 = 3.09590327428939
x2 = 3.09590327428938
x2 = 3.09590327428938
The graph
3^x=30 equation