Mister Exam

Other calculators

3^(4*x-2)=81 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4*x - 2     
3        = 81
$$3^{4 x - 2} = 81$$
Detail solution
Given the equation:
$$3^{4 x - 2} = 81$$
or
$$3^{4 x - 2} - 81 = 0$$
or
$$\frac{81^{x}}{9} = 81$$
or
$$81^{x} = 729$$
- this is the simplest exponential equation
Do replacement
$$v = 81^{x}$$
we get
$$v - 729 = 0$$
or
$$v - 729 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 729$$
We get the answer: v = 729
do backward replacement
$$81^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(81 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(729 \right)}}{\log{\left(81 \right)}} = \frac{3}{2}$$
The graph
Sum and product of roots [src]
sum
3   log(27)      pi*I     log(27)      pi*I     3    pi*I 
- + -------- - -------- + -------- + -------- + - + ------
2   2*log(3)   2*log(3)   2*log(3)   2*log(3)   2   log(3)
$$\left(\left(\frac{3}{2} + \left(\frac{\log{\left(27 \right)}}{2 \log{\left(3 \right)}} - \frac{i \pi}{2 \log{\left(3 \right)}}\right)\right) + \left(\frac{\log{\left(27 \right)}}{2 \log{\left(3 \right)}} + \frac{i \pi}{2 \log{\left(3 \right)}}\right)\right) + \left(\frac{3}{2} + \frac{i \pi}{\log{\left(3 \right)}}\right)$$
=
    log(27)    pi*I 
3 + ------- + ------
     log(3)   log(3)
$$3 + \frac{\log{\left(27 \right)}}{\log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}}$$
product
  /log(27)      pi*I  \                                   
3*|-------- - --------|                                   
  \2*log(3)   2*log(3)/ /log(27)      pi*I  \ /3    pi*I \
-----------------------*|-------- + --------|*|- + ------|
           2            \2*log(3)   2*log(3)/ \2   log(3)/
$$\frac{3 \left(\frac{\log{\left(27 \right)}}{2 \log{\left(3 \right)}} - \frac{i \pi}{2 \log{\left(3 \right)}}\right)}{2} \left(\frac{\log{\left(27 \right)}}{2 \log{\left(3 \right)}} + \frac{i \pi}{2 \log{\left(3 \right)}}\right) \left(\frac{3}{2} + \frac{i \pi}{\log{\left(3 \right)}}\right)$$
=
3*(pi*I + log(27))*(-pi*I + log(27))*(2*pi*I + log(27))
-------------------------------------------------------
                             3                         
                       16*log (3)                      
$$\frac{3 \left(\log{\left(27 \right)} - i \pi\right) \left(\log{\left(27 \right)} + i \pi\right) \left(\log{\left(27 \right)} + 2 i \pi\right)}{16 \log{\left(3 \right)}^{3}}$$
3*(pi*i + log(27))*(-pi*i + log(27))*(2*pi*i + log(27))/(16*log(3)^3)
Rapid solution [src]
x1 = 3/2
$$x_{1} = \frac{3}{2}$$
     log(27)      pi*I  
x2 = -------- - --------
     2*log(3)   2*log(3)
$$x_{2} = \frac{\log{\left(27 \right)}}{2 \log{\left(3 \right)}} - \frac{i \pi}{2 \log{\left(3 \right)}}$$
     log(27)      pi*I  
x3 = -------- + --------
     2*log(3)   2*log(3)
$$x_{3} = \frac{\log{\left(27 \right)}}{2 \log{\left(3 \right)}} + \frac{i \pi}{2 \log{\left(3 \right)}}$$
     3    pi*I 
x4 = - + ------
     2   log(3)
$$x_{4} = \frac{3}{2} + \frac{i \pi}{\log{\left(3 \right)}}$$
x4 = 3/2 + i*pi/log(3)
Numerical answer [src]
x1 = 1.5
x2 = 1.5 - 1.42980043369006*i
x3 = 1.5 + 1.42980043369006*i
x4 = 1.5 + 2.85960086738013*i
x4 = 1.5 + 2.85960086738013*i