Mister Exam

Other calculators


3t^2-4t+3=0

3t^2-4t+3=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
3*t  - 4*t + 3 = 0
$$3 t^{2} - 4 t + 3 = 0$$
Detail solution
This equation is of the form
$$a\ t^2 + b\ t + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$t_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$t_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 3$$
$$b = -4$$
$$c = 3$$
, then
$$D = b^2 - 4\ a\ c = $$
$$\left(-1\right) 3 \cdot 4 \cdot 3 + \left(-4\right)^{2} = -20$$
Because D<0, then the equation
has no real roots,
but complex roots is exists.
$$t_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$t_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$t_{1} = \frac{2}{3} + \frac{\sqrt{5} i}{3}$$
Simplify
$$t_{2} = \frac{2}{3} - \frac{\sqrt{5} i}{3}$$
Simplify
Vieta's Theorem
rewrite the equation
$$3 t^{2} - 4 t + 3 = 0$$
of
$$a t^{2} + b t + c = 0$$
as reduced quadratic equation
$$t^{2} + \frac{b t}{a} + \frac{c}{a} = 0$$
$$t^{2} - \frac{4 t}{3} + 1 = 0$$
$$p t + t^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{4}{3}$$
$$q = \frac{c}{a}$$
$$q = 1$$
Vieta Formulas
$$t_{1} + t_{2} = - p$$
$$t_{1} t_{2} = q$$
$$t_{1} + t_{2} = \frac{4}{3}$$
$$t_{1} t_{2} = 1$$
The graph
Rapid solution [src]
              ___
      2   I*\/ 5 
t_1 = - - -------
      3      3   
$$t_{1} = \frac{2}{3} - \frac{\sqrt{5} i}{3}$$
              ___
      2   I*\/ 5 
t_2 = - + -------
      3      3   
$$t_{2} = \frac{2}{3} + \frac{\sqrt{5} i}{3}$$
Sum and product of roots [src]
sum
        ___           ___
2   I*\/ 5    2   I*\/ 5 
- - ------- + - + -------
3      3      3      3   
$$\left(\frac{2}{3} - \frac{\sqrt{5} i}{3}\right) + \left(\frac{2}{3} + \frac{\sqrt{5} i}{3}\right)$$
=
4/3
$$\frac{4}{3}$$
product
        ___           ___
2   I*\/ 5    2   I*\/ 5 
- - ------- * - + -------
3      3      3      3   
$$\left(\frac{2}{3} - \frac{\sqrt{5} i}{3}\right) * \left(\frac{2}{3} + \frac{\sqrt{5} i}{3}\right)$$
=
1
$$1$$
Numerical answer [src]
t1 = 0.666666666666667 - 0.74535599249993*i
t2 = 0.666666666666667 + 0.74535599249993*i
t2 = 0.666666666666667 + 0.74535599249993*i
The graph
3t^2-4t+3=0 equation